Skip to main content
Log in

Bacteriophage adsorption efficiency and its effect on amplification

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Existing models for bacteriophage adsorption are modified with the addition of a new term, adsorption efficiency, and applied to a T4–Escherichia coli system. The adsorption efficiency is the fraction of phage that adsorbs irreversibly to the host. Adsorption kinetics were modeled using the adsorption rate constant (k) and the adsorption efficiency (ε). Experimental data demonstrated that the adsorption rate constant depends strongly on the condition of the host while the adsorption efficiency is a property of the bacteriophage population. The adsorption efficiency exhibited a marked dependence on the concentration of l-tryptophan. The system was used to study the effect of adsorption kinetics on bacteriophage amplification. Increasing adsorption efficiency had an effect similar to increasing the initial multiplicity of infection; the number of phages produced during amplification decreased. Optimizing the adsorption efficiency by manipulating the l-tryptophan concentration yielded a 14-fold increase in the number of phages produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. d’Herelle F (1926) The bacteriophage and its behavior. The Williams & Wilkins Company, Baltimore

    Google Scholar 

  2. Glynn MK et al (1998) Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the United States. N Engl J Med 338:1333–1338

    Article  CAS  Google Scholar 

  3. Hofmann J et al (1995) The prevalence of drug-resistant Streptococcus pneumoniae in Atlanta. N Engl J Med 333:481–486

    Article  CAS  Google Scholar 

  4. Panlilio AL et al (1992) Methicillin-resistant Staphylococcus aureus in U.S. hospitals, 1975–1991. Infect Control Hosp Epidemiol 13:582–586

    Article  CAS  Google Scholar 

  5. Thiel K (2004) Old dogma, new tricks—21st century phage therapy. Nat Biotechnol 22:31–36

    Article  CAS  Google Scholar 

  6. Padukone N, Perettie SW, Ollis DF (1992) Characterization of the mutant lytic state in lambda expression systems. Biotechnol Bioeng 39:369–377

    Article  CAS  Google Scholar 

  7. Padukone N, Perettie SW, Ollis DF (1990) Lambda vectors for stable cloned gene expression. Biotechnol Prog 6:277–282

    Article  CAS  Google Scholar 

  8. Lin CS et al (1998) Characterization of bacteriophage lambda Q mutant for stable and efficient production of recombinant protein in Escherichia coli system. Biotechnol Bioeng 57:529–535

    Article  CAS  Google Scholar 

  9. Oh JS et al (2007) Construction of various bacteriophage lambda mutants for stable and efficient production of recombinant protein in Escherichia coli. Process Biochem 42:486–490

    Article  CAS  Google Scholar 

  10. Hershey AD, Kalmanson GM, Bronfenbrenner J (1944) Coordinate effects of electrolyte and antibody on the infectivity of bacteriophage. J Immunol 48:221–239

    CAS  Google Scholar 

  11. Tolmach LJ, Puck TT (1952) The mechanism of virus attachment to host cells: III. J Am Chem Soc 74:5551–5553

    Article  CAS  Google Scholar 

  12. Puck TT, Garen A, Cline J (1951) The mechanism of virus attachment to host cells: I. The role of ions in the primary reaction. J Exp Med 93:65–88

    Article  CAS  Google Scholar 

  13. Anderson TF (1945) The role of tryptophane in the adsorption of two bacterial viruses on their host, E. coli. J Cellular Comp Physiol 25:17–26

    Article  CAS  Google Scholar 

  14. Stent GS, Wollman EL (1950) Studies on activation of T4 bacteriophage by cofactor II: the mechanism of activation. Biochim Biophys Acta 6:307–316

    Article  CAS  Google Scholar 

  15. Stent GS, Wollman EL (1951) Studies on activation of T4 bacteriophage by cofactor III: conditions affecting the activation process. Biochim Biophys Acta 6:374–383

    Article  CAS  Google Scholar 

  16. Wollman EL, Stent GS (1950) Studies on activation of T4 bacteriophage by cofactor I: the degree of activity. Biochim Biophys Acta 6:292–306

    Article  CAS  Google Scholar 

  17. Wollman EL, Stent GS (1952) Studies on activation of T4 bacteriophage by cofactor IV: nascent activity. Biochim Biophys Acta 9:538–550

    Article  CAS  Google Scholar 

  18. Kellenberger E et al (1965) Functions and properties related to the tail fibers of bacteriophage T4. Virol 26:419–440

    Article  CAS  Google Scholar 

  19. Brenner S et al (1962) On the interaction of adsorption cofactors with bacteriophages T2 and T4. Virol 17:30–39

    Article  CAS  Google Scholar 

  20. Gamow RI, Kozloff LM (1968) Chemically induced cofactor requirement for bacteriophage T4D. J Virol 2:480–487

    CAS  Google Scholar 

  21. Adams MH (1959) Bacteriophages. Interscience Publishers, New York

    Google Scholar 

  22. Stent GS, Wollman EL (1952) On the two-step nature of bacteriophage adsorption. Biochim Biophys Acta 8:260–269

    Article  CAS  Google Scholar 

  23. Gamow RI (1969) Thermodynamic treatment of bacteriophage T4B adsorption kinetics. J Virol 4:113–115

    CAS  Google Scholar 

  24. Moldovan R, Chapman-McQuiston E, Wu XL (2007) On kinetics of phage adsorption. Biophys J 93:303–315

    Article  CAS  Google Scholar 

  25. Goldberg E, Grinius L, Letellier L (1994) In: Karam JD (ed) Molecular biology of bacteriophage T4. American Society for Microbiology, Washington

    Google Scholar 

  26. Hadas H et al (1997) Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143:179–185

    Article  CAS  Google Scholar 

  27. Anderson TF (1948) The inheritance of requirements for adsorption cofactors in the bacterial virus-T4. J Bacteriol 55:651–658

    Google Scholar 

  28. Edgar RS, Lielausis I (1964) Temperature-sensitive mutants of bacteriophage T4D: their isolation and genetic characterization. Genetics 49:649–662

    CAS  Google Scholar 

  29. Ellis EL, Delbruck M (1939) The growth of bacteriophage. J Gen Physiol 22:365–384

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science and Engineering Research Council of Canada, the Eugenie Ulmer-Lamothe Fund of McGill University, and the Richard H. Tomlinson Doctoral Fellowship of McGill University for providing financial support for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storms, Z.J., Arsenault, E., Sauvageau, D. et al. Bacteriophage adsorption efficiency and its effect on amplification. Bioprocess Biosyst Eng 33, 823–831 (2010). https://doi.org/10.1007/s00449-009-0405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0405-y

Keywords

Navigation