Skip to main content
Log in

Development of glucose sensor using two-photon adsorbed photopolymerization

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A novel glucose sensor was constructed, and its analytical potential examined. A chip-type three-electrode system for use in a flow-type electrochemical glucose sensor was fabricated using a UV lithography technique on a glass slide. An Ag/AgCl reference electrode was made by electroplating silver onto a Pt electrode and dipping in a saturated KCl solution for 30 min. In addition, a glucose-sensing electrode was fabricated using a two-photon adsorbed photopolymerization technique with a photo-reactive resin containing a glucose oxidase enzyme, ferrocene mediator, non-ionic surfactant, and carbon nanotubes. The cyclic voltammetry of the potassium ferrocyanide in the Pt sensor system showed a stable electrode condition. The response of the modified Pt sensor confirms the feasibility of using a two-photon adsorbed photopolymerization technique for the easy fabrication of functional biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tranchant I, Herve AC, Carlisle S, Lowe P, Slevin CJ, Forssten C, Dilleen J, Tabor AB, Williams DE, Hailes HC (2007) Applications of tailored ferrocenyl molecules as electrochemical probes of biochemical interactions. Bioconjugate Chem 18:199–208

    Article  CAS  Google Scholar 

  2. Cass AE, Davis G, Francis GD, Hill HA, Aston WJ, Higgins IJ, Plotkin EV, Scott LD, Turner AP (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56:667–671

    Article  CAS  Google Scholar 

  3. Foulds NC, Lowe CR (1988) Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers. Anal Chem 60:2473–2478

    Article  CAS  Google Scholar 

  4. Pan D, Chen J, Nie L, Tao W, Yao S (2004) An amperometric glucose biosensor based on poly(o-aminophenol) and Prussian blue films at platinum electrode. Anal Biochem 324:115–122

    Article  CAS  Google Scholar 

  5. Garjonyte R, Malinauskas A (2000) Amperometric glucose biosensors based on Prussian Blue- and polyaniline-glucose oxidase modified electrodes. Biosens Bioelectron 15:445–451

    Article  CAS  Google Scholar 

  6. Ben Rejeb I, Arduini F, Amine A, Gargouri M, Palleschi G (2007) Amperometric biosensor based on Prussian Blue-modified screen-printed electrode for lipase activity and triacylglycerol determination. Anal Chim Acta 594:1–8

    Article  CAS  Google Scholar 

  7. Gregg BA, Heller A (1990) Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications. Anal Chem 62:258–263

    Article  CAS  Google Scholar 

  8. Hale PD, Bouguslavsky LI, Karan HI, Lan HL, Lee HS, Okamoto Y, Skotheim TA (1991) Amperometric glucose sensors based on ferrocene-modified poly(ethylene oxide) and glucose oxidase. Anal Chim Acta 251:121–128

    Article  CAS  Google Scholar 

  9. Zhou DM, Sun JJ, Chen HY, Fang HQ (1998) Electrochemical polymerization of toluidine blue and its application for the amperometric determination of β-d-glucose. Electrochim Acta 43:1803–1809

    Article  CAS  Google Scholar 

  10. Low SB, Lee YH, Bohari MY, Musa A (2005) The electrochemical behaviour of ferrocene in a photocurable poly(methyl methacrylate-co-2-hydroxylethyl methacrylate) film for a glucose biosensor. Bioelectrochemistry 65:157–162

    Article  Google Scholar 

  11. Anicet N, Anne A, Moiroux J, Saveant J-M (1998) Electron transfer in organized assemblies of biomolecules. Construction and dynamics of avidin/biotin co-immobilized glucose oxidase/ferrocene monolayer carbon electrodes. J Am Chem Soc 120:7115–7116

    Article  CAS  Google Scholar 

  12. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    Article  CAS  Google Scholar 

  13. Lin YH, Lu F, Tu Y, Ren ZF (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett 4:191–195

    Article  CAS  Google Scholar 

  14. Li J, Wang YB, Qiu JD, Sun D, Xia XH (2005) Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor. Anal Bioanal Chem 383:918–922

    Article  CAS  Google Scholar 

  15. Gooding JJ (2005) Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim Acta 50:3049–3060

    Article  CAS  Google Scholar 

  16. Liu JQ, Chou A, Rahmat W, Paddon-Row MN, Gooding JJ (2005) Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 17:38–46

    Article  CAS  Google Scholar 

  17. Wang J, Musameh M (2003) Enzyme-dispersed carbon-nanotube electrodes: a needle microsensor for monitoring glucose. Analyst 128:1382–1385

    Article  CAS  Google Scholar 

  18. Gan ZH, Zhao Q, Gu ZN, Zhung QK (2004) Electrochemical studies of single-wall carbon nanotubes as nanometer-sized activators in enzyme-catalyzed reaction. Anal Chim Acta 511:239–247

    Article  CAS  Google Scholar 

  19. Dai YQ, Shiu KK (2004) Glucose biosensor based on multi-walled carbon nanotube modified glassy carbon electrode. Electroanalysis 16:1697–1703

    Article  CAS  Google Scholar 

  20. Luque GL, Rodriguez MC, Rivas GA (2005) Glucose biosensors based on the immobilization of copper oxide and glucose oxidase within a carbon paste matrix. Talanta 66:467–471

    Article  CAS  Google Scholar 

  21. Yao Y, Shiu KK (2007) Electron-transfer properties of different carbon nanotube materials, and their use in glucose biosensors. Anal Bioanal Chem 387:303–309

    Article  CAS  Google Scholar 

  22. Britto PJ, Santhanam KSV, Rubio A, Alonso JA, Ajayan PM (1999) Improved charge transfer at carbon nanotube electrodes. Adv Mater 11:154–157

    Article  CAS  Google Scholar 

  23. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40:5967–5971

    Article  CAS  Google Scholar 

  24. Zhao YD, Zhang WD, Chen H, Luo QM (2002) Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode. Anal Sci 18:939–941

    Article  CAS  Google Scholar 

  25. Shen F (ed) (1984) The principles of nonlinear optics. Wiley, Singapore

    Google Scholar 

  26. Kawata S, Sun HB, Tanaka T, Takada K (2001) Finer features for functional microdevices—micromachines can be created with higher resolution using two-photon absorption. Nature 412:697–698

    Article  CAS  Google Scholar 

  27. Brian HC, Sundaravel PA, Stephen B, Daniel LD, HJeffrey EE, Lael A, Ahmed H, Stephene MK, Sandy Lee I-Y, Dianne M-M, Jinqui Q, Harald R, Mariacristana R, Wu LX, Seth RM, Joseph PW (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398:51–54

    Article  Google Scholar 

  28. Wu SH, Serbin J, Gu M (2006) Two-photon polymerisation for three-dimensional micro-fabrication. J Photochem Photobiol A 181:1–11

    Article  CAS  Google Scholar 

  29. Kang BY, Wu JW, Lee KS, Rhee BK, Han SH (2004) Fabrication of 3D nano-structures by using two-photon absorption polymerization. J Korean Phys Soc 45:1154–1157

    CAS  Google Scholar 

  30. Li X, Zhao YX, Wu H, Shi MQ, Wu FP (2007) Two-photon photopolymerization using novel asymmetric ketocoumarin derivatives. J Photochem Photobiol A 190:22–28

    Article  CAS  Google Scholar 

  31. Kim JM, Muramatsu H (2005) Two-photon photopolymerized tips for adhesion-free scanning-probe microscopy. Nano Lett 5:309–314

    Article  CAS  Google Scholar 

  32. Muramatsu H, Yamamoto Y, Shigeno M, Shirakawabe Y, Inoue A, Kim WS, Kim SJ, Chang SM, Kim JM (2008) Advanced tip design for liquid phase vibration mode atomic force microscopy. Anal Chim Acta 611:233–238

    Article  CAS  Google Scholar 

  33. Diaspro A, Testa I, Faretta M, Magrassi R, Barozzi S, Parazzoli D, Vicidomini G (2006) 3D localized photoactivation of pa-GFP in living cells using two-photon interactions. Conf Proc IEEE Eng Med Biol Soc 1:389–391

    Article  Google Scholar 

  34. Bosma AY, Ulijn RV, McConnell G, Girkin J, Halling PJ, Flitsch SL (2003) Using two photon microscopy to quantify enzymatic reaction rates on polymer beads. Chem Commun (Camb) 2790–2791

  35. Zhang SX, Niu YM, Sun CQ (2004) Construction of covalently attached enzyme multilayer films based on the photoreaction of diazo-resins and glucose oxidase. Electrochim Acta 49:4777–4786

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by KOSEF (Korea, R01-2007-000-20499-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Mok Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.M., Park, JJ., Lee, HJ. et al. Development of glucose sensor using two-photon adsorbed photopolymerization. Bioprocess Biosyst Eng 33, 47–53 (2010). https://doi.org/10.1007/s00449-009-0368-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0368-z

Keywords

Navigation