Skip to main content

Advertisement

Log in

Removal of potassium chloride by nanofiltration from ion-exchanged solution containing potassium clavulanate

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, nanofiltration with NF200 membrane was employed to remove KCl from ion-exchanged solutions containing potassium clavulanate. The pore radius of NF200 membrane was estimated to be around 0.39 nm. The effects of operating pressure on separation performance were investigated in a range of 100–400 psig. The influences of cross-flow velocity (0.14–0.70 cm/s), temperature (4–25 °C), and feed composition were also investigated. In all experiments, clavulanate rejection showed high levels from 0.91 to 0.99, while chloride rejection ranged from 0.06 to 0.54. In a case at an operating pressure of 50 psig and 25 °C, as much as 94% of clavulanate was retained while 94% of chloride was removed, indicating that NF200 membrane was a suitable choice for selectively removing KCl. NF200 membrane also showed a stable performance in the operational stability test with an ion-exchanged solution obtained by treating actual fermentation broth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A J :

Frequency factor (L/m2 h)

A k :

Membrane porosity

C f :

Solute concentration in feed (mol/L)

C m :

Solute concentration at membrane surface (mol/L)

C p :

Solute concentration in permeate (mol/L)

D s :

Solute diffusivity (m2/s)

E J :

Permeation activation energy (J/mol)

H D :

Wall correction factor for diffusion

H F :

Wall correction factor for convection

J s :

Solute flux (mol L/m2 h)

J v :

Solution flux (L/m2 h)

L p :

Pure water permeability (L/m2 h psig)

ΔP :

Pressure difference (psig)

P s :

Solute permeability (L/m2 h)

r p :

Membrane pore radius (nm)

r s :

Solute radius (nm)

R :

Gas constant (J/mol K)

R obs :

Observed rejection

R real :

Real rejection

S D :

Steric hindrance factor for diffusion

S F :

Steric hindrance factor for convection

T :

Temperature (K)

Δx :

Membrane thickness (m)

λ :

Ratio of solute radius to membrane pore radius, r s/r p

Δπ :

Osmotic pressure difference (psig)

σ :

Reflection coefficient

References

  1. Brown AG, Butterworth D, Cole M, Hanscomb G, Hood JD, Reading C, Rolinson GN (1976) Naturally occurring β-lactamase inhibitors with antibacterial activity. J Antibiot 29:668–669

    CAS  Google Scholar 

  2. Mayer AF, Deckwer WD (1996) Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivation. Appl Microbiol Biotechnol 45:41–46

    Article  CAS  Google Scholar 

  3. Butterworth D (1984) Biotechnology of industrial antibiotics. Marcel Dekker Inc., New York

    Google Scholar 

  4. Kim HH, Kang SH, Chang YK (2008) Recovery of potassium clavulanate from fermentation broth by ion-exchange chromatography and desalting electrodialysis. Biotechnol Bioprocess Eng (accepted)

  5. Schäfer AI, Fane AG, Waite TD (1998) Nanofiltration of natural organic matter: Removal, fouling and the influence of multivalent ions. Desalination 118:109–122

    Article  Google Scholar 

  6. Xu Y, Lebrun RE (1999) Investigation of the solute separation by charged nanofiltration membrane: effect of pH, ionic strength and solute type. J Membr Sci 158:93–104

    Article  CAS  Google Scholar 

  7. Alborzfar M, Jonsson G, Gron C (1998) Removal of natural organic matter from two types of humic ground waters by nanofiltration. Water Res 32:2983–2994

    Article  CAS  Google Scholar 

  8. Kang SH, Chang YK, Chang HN (2004) Recovery of ammonium lactate and removal of hardness from fermentation broth by nanofiltration. Biotechnol Prog 20:764–770

    Article  CAS  Google Scholar 

  9. Wu LH (1997) Nanofiltration membrane—a new separating material and its application in pharmaceutical industry. Membr Sci Technol 17:11–15

    CAS  Google Scholar 

  10. Sun M, Gan SX, Yin DF, Liu HY, Yang WD (2000) Application of nanofiltration membrane in the purification process of tylosin. Chin J Antibiot 25:172–174

    CAS  Google Scholar 

  11. Zhang W, Lin W, Fei ML, Wan HM (1999) Application of the NP composite nanofiltration membrane in the concentration processes of antibiotics. Chin J Antibiot 24:99–101

    CAS  Google Scholar 

  12. Zhang W, He GH, Gao P, Chen GH (2003) Development and characterization of composite nanofiltration membranes and their application in concentration of antibiotics. Sep Purif Technol 30:27–35

    Article  CAS  Google Scholar 

  13. Kedem O, Katchalsky A (1963) Permeability of composite membranes. Part I. Electric current, column flow and flow of the solute through membranes. Trans Faraday Soc 59:1918–1930

    Article  Google Scholar 

  14. Diwara CK, Lô S, Rumeau M, Pontié M, Sarr O (2003) A phenomenological mass transfer approach in nanofiltration of halide ions for a selective defluorination of brackish drinking water. J Membr Sci 219:103–112

    Article  Google Scholar 

  15. Hafiane A, Lemordant D, Dhahbi M (2000) Removal of hexavalent chromium by nanofiltration. Desalination 130:305–312

    Article  CAS  Google Scholar 

  16. Gilron J, Gara N, Kedom O (2001) Experimental analysis of negative salt rejection in nanofiltration membranes. J Membr Sci 185:223–236

    Article  CAS  Google Scholar 

  17. Nakao SI, Kimura S (1982) Models of membrane transport phenomena and their applications for ultrafiltration data. J Chem Eng Jpn 15:200

    Article  CAS  Google Scholar 

  18. Wang XL, Tsuru T, Togoh M, Nakao S, Kimura S (1995) Evaluation of pore structure and electrical properties of membranes. J Chem Eng Jpn 28:186–192

    Article  CAS  Google Scholar 

  19. Cuartas-Uribe B, Vincent-Vela MC, Alvarez-Blanco S, Alcaina-Miranda MI, Soriano-Costa E (2007) Nanofiltration of sweet whey and prediction of lactose retention as a function of permeate flux using the Kedem–Spiegler and Donnan Steric Partitioning models. Sep Purif Technol 56:38–46

    Article  CAS  Google Scholar 

  20. Ballet GT, Hafiane A, Dhahbi M (2007) Influence of operating conditions on the retention of phosphate in water by nanofiltration. J Membr Sci 290:164–172

    Article  CAS  Google Scholar 

  21. Hilal N, Al-Zoubi H, Darwish NA, Mohammad AW (2005) Characterisation of nanofiltration membranes using atomic force microscopy. Desalination 177:187–199

    Article  CAS  Google Scholar 

  22. Bowen WR, Cassey B, Jones J, Oatley DL (2004) Modelling the performance of membrane nanofiltration—application to an industrially relevant separation. J Membr Sci 242:211–220

    Article  CAS  Google Scholar 

  23. Cavaco Morão AI, Brites Alves AM, Diná Afonso M (2006) Concentration of clavulanic acid broths: influence of the membrane surface charge density on NF operation. J Membr Sci 281:417–428

    Article  Google Scholar 

  24. Saitúa H, Campderrós M, Cerutti S, Pérez Padilla A (2005) Effect of operating conditions in removal of arsenic from water by nanofiltration membrane. Desalination 172:173–180

    Article  Google Scholar 

  25. Shi D, Kong Y, Yu J, Wang Y, Yang J (2006) Separation performance of polyimide nanofiltration membranes for concentrating spiramycin extract. Desalination 191:309–317

    Article  CAS  Google Scholar 

  26. Kesting RE (1971) Synthetic polymeric membranes. McGraw-Hill, New York

    Google Scholar 

  27. Ratanatamskul C, Yamamoto K, Urase T, Ohgaki S (1996) Effect of operating conditions on rejection of anionic pollutants in the water environment by nanofiltration especially in very low pressure range. Water Sci Technol 34:149–156

    CAS  Google Scholar 

  28. Haginaka J, Nakagawa T, Uno T (1981) Stability of clavulanic acid in aqueous solutions. Chem Pharm Bull 29:3334–3341

    CAS  Google Scholar 

  29. Wang XL, Tsuru T, Nakao S, Kimura S (1997) The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes. J Membr Sci 135:19–32

    Article  CAS  Google Scholar 

  30. Paugam L, Taha S, Dorange G, Jaouen P, Quéméneur F (2005) Mechanism of nitrate ions transfer in nanofiltration depending on pressure, pH, concentration and medium composition. J Membr Sci 231:37–46

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Source Technology Development Programs (No. 10032001) of the Korean Ministry of Knowledge Economy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Keun Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.H., Kim, J.H. & Chang, Y.K. Removal of potassium chloride by nanofiltration from ion-exchanged solution containing potassium clavulanate. Bioprocess Biosyst Eng 33, 149–158 (2010). https://doi.org/10.1007/s00449-009-0360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0360-7

Keywords

Navigation