Skip to main content
Log in

Chiral resolution of phenylalanine by d-Phe imprinted membrane considering rejection property

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

An enantio-selective d-Phe imprinted P(AA-co-AN) membrane was prepared using the wet-phase inversion method. The membrane not only selectively adsorbed phenylalanine but also rejected it with a rejection selectivity of 0.82–0.64 and 0.91–0.63 during the filtration of 100 and 10 ppm (g m−3) racemate solutions, respectively. The fluxes of d-Phe and l-Phe during filtration of 10 ppm racemate solution were 0.0077–0.0229 and 0.0064–0.0208 mg m−2 s−1, respectively, and the fluxes of d-Phe and l-Phe during filtration of 100 ppm racemate solution were 0.1287–0.2522 and 0.1174–0.2458 mg m−2 s−1, respectively. The adsorption selectivity was higher at low concentration. The adsorption selectivities varied from 1.11 to 1.65 and from 1.64 to 2.78 during filtration of 100 and 10 ppm racemate solutions, respectively. In respect to desorption, the fractional difference between d-Phe and l-Phe in the recovered solution from 10 ppm was higher than that from 100 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

The surface area of membrane (m2)

C o :

Concentration of d- or l-Phe in the feed solution (mg m−3)

C p :

Concentration of d- or l-Phe in permeate (mg m−3)

C PD :

Concentration of d-Phe in the permeate (mg m−3)

C PL :

Concentration l-Phe in the permeate (mg m−3)

C r :

Concentrations of d- or l-Phe in the retentate (mg m−3)

J Phe :

Flux of d- or l-Phe (mg m−2 s−1)

J W :

Flux of solution (m s−1)

P :

Permeability coefficient (m2 s−1)

P D :

Permeability coefficient of the d-Phe (m2 s−1)

P L :

Permeability coefficient of the l-Phe (m2 s−1)

Q p :

Amount of the template adsorbed on the membrane (mg g−1)

Q D :

Amount of the counter enantiomer adsorbed on the membrane (mg g−1)

R :

Rejection of the d- or l-Phe (%)

R RD :

Rejection of d-Phe (%)

R RL :

Rejection of l-Phe (%)

S DP :

Uptake value of the d-Phe (mg)

S LP :

Uptake value of l-Phe (mg)

T :

The required time for a solution to pass through the membrane (s)

T :

Time (in seconds) required water to pass through the membrane (s)

V O :

Volumes of feed solution (m−3)

V R :

Volumes of retentate (m−3)

V W :

Volume of the permeate in (m3)

α:

Adsorption selectivity of the membrane

α d :

Adsorption selectivity of the d-Phe imprinted membrane

αR :

Rejection selectivity of the membrane

α PS :

Permselectivity of the d-Phe imprinted membrane

∂:

Thickness of membrane (m)

References

  1. Wulff G, Sarhan A (1972) Use of polymers with enzymes-analogues structures for the resolution of racemates. Angew Chem Int Ed 11:341–344

    CAS  Google Scholar 

  2. Ul-Haq N, Park JK (2008) Optical resolution of phenylalanine using D-Phe-imprinted poly(acrylic acid-co-acrylonitrile) membrane—racemate solution concentration effect. Polym Compos 29:1006–1013

    Article  CAS  Google Scholar 

  3. Ul-Haq N, Khan T, Park JK (2008) Enantioseparation with D-Phe- and L-Phe-imprinted PAN-based membranes by ultrafiltration. J Chem Technol Biotechnol 83:524–533

    Article  CAS  Google Scholar 

  4. Piletsky SA, Panasyuk TL, Piletskaya EV, Nichollsb IA, Ulbricht M (1999) Receptor and transport properties of imprinted polymer membranes. J Membr Sci 157:263–278

    Article  CAS  Google Scholar 

  5. Yoshikawa M, Izumi J, Kitao T, Koya S, Sakamoto S (1995) Molecularly imprinted polymeric membranes for optical resolution. J Membr Sci 108:171–175

    Article  CAS  Google Scholar 

  6. Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. J Am Chem Soc 117:7105–7111

    Article  CAS  Google Scholar 

  7. Spivak DA, Shea KJ (1998) Binding of nucleotide bases by imprinted polymers. Macromolecules 31:2160–2165

    Article  CAS  Google Scholar 

  8. Piletsky SA, Andersson HS, Nicholls IA (1999) Combined hydrophobic and electrostatic interaction-based recognition in molecularly imprinted polymers. Macromolecules 32:633–636

    Article  CAS  Google Scholar 

  9. Matsui J, Nicholls IA, Takeuchi T, Mosbach K, Karubea I (1996) Metal ion mediated recognition in molecularly imprinted polymers. Anal Chim Acta 335:71–77

    Article  CAS  Google Scholar 

  10. Zhang Y, Tong A, Li L (2004) Synthesis of molecularly imprinted polymer with 7-chloroethyl-theophylline-immobilized silica gel as template and its molecular recognition function. Spectroc Acta Pt A-Molec Biomolec Spectr 60:241–244

    Article  Google Scholar 

  11. Yang G, Yin J, Li Z, Liu H, Cai L, Wang D, Chen Y (2004) Chiral separation of nateglinide and its L-enantiomer on a molecularly imprinted polymer-based stationary phase. Chromatographia 59:705–708

    CAS  Google Scholar 

  12. Sergeyeva TA, Matuschewski H, Piletsky SA, Bendig J, Schedler U, Ulbricht M (2001) Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization. J Chromatogr A 907:89–99

    Article  CAS  Google Scholar 

  13. Roper DK, Lightfoot EN (1995) Separation of biomolecules using adsorptive membranes. J Chromatogr A 702:3–26

    Article  CAS  Google Scholar 

  14. Kobayashi T, Fukaya T, Abe M, Fujii N (2004) Phase inversion molecular imprinting by using template copolymers for high substrate recognition. Langmuir 18:2866–2872

    Article  Google Scholar 

  15. Ulbricht M (2004) Membrane separations using molecularly imprinted polymers. J Chromatogr B 804:113–125

    Article  CAS  Google Scholar 

  16. Takeda K, Kobayashi T (2006) Hybrid molecularly imprinted membranes for targeted bisphenol derivatives. J Membr Sci 275:61–69

    Article  CAS  Google Scholar 

  17. Porter MC (1990) Hand book of industrial membrane technology. In: Porter MC (ed) Noyes Publications, Westwood

  18. De Bruin TJM, Marcelis ATM, Zuilhof H, Rodenburg LM, Niederländer HAG, Koudijs A, Overdevest PEM, Padt AVD, Sudhölter EJR (2000) Separation of amino acid enantiomers by micelle-enhanced ultrafiltration. Chirality 12:627–636

    Article  Google Scholar 

  19. Li Y, Shahbazi A, Kadzere CT (2006) Separation of cells and proteins from fermentation broth using ultrafiltration. J Food Eng 75:574–580

    Article  CAS  Google Scholar 

  20. Jiang Z, Yu Y, Wu H (2006) Preparation of CS/GPTMS hybrid molecularly imprinted membrane for efficient chiral resolution of phenylalanine isomers. J Membr Sci 280:876–882

    Article  CAS  Google Scholar 

  21. Wang HY, Kobayashi T, Fujii N (1996) Molecular imprint membranes prepared by the phase inversion precipitation technique. Langmuir 12:4850–4856

    Article  CAS  Google Scholar 

  22. Amiri MC, Samiei M (2007) Enhancing permeate flux in a RO plant by controlling membrane fouling. Desalination 207:361–369

    Article  CAS  Google Scholar 

  23. Baker RW, Eirich FR (1972) Low Pressure ultrafiltration of sucrose and raffinose solutions with anisotropic membranes. J Phys Chem 76:238–242

    Article  CAS  Google Scholar 

  24. Park JK, Chang HN, Park JH, Earmme YY (1986) Direction-dependent flux anomalies in asymmetric reverse-osmosis membranes. Ind Eng Chem Fundam 25:189–195

    Article  CAS  Google Scholar 

  25. Gotoh T, Iguchi H, Kikuchi K (2004) Separation of glutathione and its related amino acids by nanofiltration. Biochem Eng J 19:165–170

    Article  CAS  Google Scholar 

  26. Park JK, Kim SJ (2004) separation of phenylalanine by ultrafiltration using D-Phe imprinted polyacrylonitrile-poly(acrylic acid)-poly(acryl amide) terpolymer membrane. Korean J Chem Eng 21:994–998

    Article  CAS  Google Scholar 

  27. Chen Y, Kele M, Quinones I, Sellegren B, Guichon G (2001) Influence of the pH on the behavior of an imprinted polymeric stationary phase-supporting evidence for a binding site model. J Chromatogr A 927:1–17

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are indebted to the Center for Advanced Bioseparation Technology for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong Kon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ul-Haq, N., Park, J.K. Chiral resolution of phenylalanine by d-Phe imprinted membrane considering rejection property. Bioprocess Biosyst Eng 33, 79–86 (2010). https://doi.org/10.1007/s00449-009-0352-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0352-7

Keywords

Navigation