Bioprocess and Biosystems Engineering

, Volume 32, Issue 6, pp 825–835 | Cite as

Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10

  • R. Gandhimathi
  • G. Seghal Kiran
  • T. A. Hema
  • Joseph Selvin
  • T. Rajeetha Raviji
  • S. Shanmughapriya
Original Paper


A sponge-associated marine actinomycetes Nocardiopsis alba MSA10 was screened and evaluated for the production of biosurfactant. Biosurfactant production was confirmed by conventional screening methods including hemolytic activity, drop collapsing test, oil displacement method, lipase production and emulsification index. The active compound was extracted with three solvents including ethyl acetate, diethyl ether and dichloromethane. The diethyl ether extract was fractionated by TLC and semi-preparative HPLC to isolate the pure compound. In TLC, a single discrete spot was obtained with the Rf 0.60 and it was extrapolated as valine. Based on the chemical characterization, the active compound was partially confirmed as lipopeptide. The optimum production was attained at pH 7, temperature 30°C, and 1% salinity with glucose and peptone supplementation as carbon and nitrogen sources, respectively. Considering the biosurfactant production potential of N. alba, the strain could be developed for large-scale production of lipopeptide biosurfactant.


Biosurfactants Lipopeptide Marine actinomycetes Optimization Nocardiopsis 


  1. 1.
    Altschul SF, Gise W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment tool. J Mol Biol l21:403–410Google Scholar
  2. 2.
    Altschul SF, Thomas LM, Alejandro AS, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  3. 3.
    Banat IM (1993) The isolation of thermophilic biosurfactant producing Bacillus sp. Biotechnol Lett 15:591–594CrossRefGoogle Scholar
  4. 4.
    Banat IM (2000) Biosurfactants, more in demand than ever. Biofutur 198:44–47CrossRefGoogle Scholar
  5. 5.
    Bertrand JC, Bonin P, Goutx M, Mille G (1993) Biosurfactant production by marine microorganisms: potential application to fighting hydrocarbon marine pollution. J Mar Biotechnol 1:125–129Google Scholar
  6. 6.
    Brand T, Alsamius B (2004) Cell-wall degrading enzymes in slow filters of closed hydroponic systems. J Hortic Sci Biotechnol 79:228–233Google Scholar
  7. 7.
    Bultel V, Berge JP, Debrituz C, Nicolas JL, Guyot M (1999) Metabolites from the sponge-associated bacterium Pseudomonas species. Mar Biotechnol 1:384–390CrossRefGoogle Scholar
  8. 8.
    Cameotra SS, Makkar RS (2004) Recent application of biosurfactant as biological and immunological molecules. Curr Opin Microbiol 7:262–266CrossRefGoogle Scholar
  9. 9.
    Carillo P, Mardarz C, Pitta-Alvarez S (1996) Isolation and selection of biosurfactant producing bacteria. World J Microbiol Biotechnol 12:82–84CrossRefGoogle Scholar
  10. 10.
    Chandrasekaran EV, Bemiller JN (1980) Constituent analyses of glycosaminoglycans. In: Whistler RL (ed) Methods in carbohydrate chemistry. Academic Press, New York, pp 89–96Google Scholar
  11. 11.
    Chaplin MF, Kennedy JF (1994) Carbohydrate analysis a practical approach, 2nd edn. IRL, Oxford, pp 1–36. ISBN 0947946446Google Scholar
  12. 12.
    Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64Google Scholar
  13. 13.
    Deziel E, Paquette G, Villemur R (1999) Biosurfactant production by a soil Pseudomonas strains growing on polyaromatic hydrocarbons. Appl Environ Microbiol 62:1908–1912Google Scholar
  14. 14.
    Duvnjak Z, Kosaric N (1985) Production and release of surfactant by Corynebacterium lepus in hydrocarbon and glucose media. Biotechnol Lett 7:793–796CrossRefGoogle Scholar
  15. 15.
    Enticknap JJ, Kelly M, Peraud O, Hill RT (2006) Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol 72:3724–3732CrossRefGoogle Scholar
  16. 16.
    Garrity GM, Lilburn TG, Cole JR, Harrison SH, Euzeby J, Tindall BJ (2007) The taxonomic outline of bacteria and archaea. TOBA Release 7.7, March 2007. Michigan State University Board of TrusteesGoogle Scholar
  17. 17.
    Georgiou G, Lin SC, Sharma M (1990) Surface active compounds from microorganisms. Biotechnology 10:60–65Google Scholar
  18. 18.
    Gerard J, Lloyd R, Barshy T, Haden P, Kelly MT, Andersen RJ (1997) Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two Pseudomonads isolated from marine habitats. J Nat Prod 60:223–229CrossRefGoogle Scholar
  19. 19.
    Givskov M, Ostling J, Eberl L, Lindum P, Christensen AB, Christiansen G, Molin S, Kjelleberg S (1998) Two separate regulatory systems participate in control of swarming motility of Serratia liquifaciens MG1. J Bacteriol 180:742–745Google Scholar
  20. 20.
    Goldman S, Shabtai Y, Rubinovitz C, Rosenberg E (1982) Emulsan in Acinetobacter calcoaceticus RAG-I: distribution of cell free and cell associated cross-reacting materials. Appl Environ Microbiol 44:165–170Google Scholar
  21. 21.
    Harrigan GG, Harrigan BL, Davidson BS (1997) Kailuins A–D, new cyclic acyldepsipeptides from cultures of a marine derived bacterium. Tetrahedron 53:167–174CrossRefGoogle Scholar
  22. 22.
    Heerklotz H, Seelig J (2001) Detergent like action of the antibiotic peptide surfactin on lipid membranes. Biophys J 81:1547–1554CrossRefGoogle Scholar
  23. 23.
    Hood SK, Zottola EA (1995) Biofilms in food processing. Food Control 6:9–18CrossRefGoogle Scholar
  24. 24.
    Hsieh FC, Li MC, Lin TC, Kao SS (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49(3):91–186CrossRefGoogle Scholar
  25. 25.
    Hutchison ML, Jhonstone K (1993) Evidence for the involvement of the surface active properties of the extracellular toxin tolaasin in the manifestation of brown blotch disease symptoms by Pseudomonas tolaasi on Agaricus bisporus. Physiol Mol Plant Pathol 42:373–384CrossRefGoogle Scholar
  26. 26.
    Kastner M, Jammali MS, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl Microbiol Biotechnol 41:267–273CrossRefGoogle Scholar
  27. 27.
    Katz E, Demain AL (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 41:449–474Google Scholar
  28. 28.
    Kobayashi J, Ishibashi M (1993) Bioactive metabolites of symbiotic marine microorganisms. Chem Rev 93:1753–1769CrossRefGoogle Scholar
  29. 29.
    Kuyukina MS, Ivshina IB, Philp JC, Christofi N, Dunbar SA, Ritchkova MI (2001) Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods 46:149–156CrossRefGoogle Scholar
  30. 30.
    Lechavalier MP, Lechavalier HA (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J System Bacteriol 20:435–443CrossRefGoogle Scholar
  31. 31.
    Lowry OH, Rosebrought NJ, Farr A, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 139:265–274Google Scholar
  32. 32.
    Makkar RS, Cameotra SS (1999) Structural characterization of a biosurfactant produced by Bacillus subtilis at 45°C. J Surfact Deterg 2:237–241CrossRefGoogle Scholar
  33. 33.
    Maneerat S, Phetrong K (2006) Isolation of biosurfactant producing marine bacteria and characteristics of selected biosurfactant. J Sci Technol 29(3):781–791Google Scholar
  34. 34.
    Maneerat S, Nitoda T, Kanzaki H, Kawai F (2005) Bile acids are new products of marine bacterium, Myroides sp. strain SM1. Appl Microbiol Biotechnol 67:683–699CrossRefGoogle Scholar
  35. 35.
    Marahiel MA, Nakano MM, Zuber P (1993) Regulation of peptide antibiotic production in Bacillus. Mol Microbiol 7:631–636CrossRefGoogle Scholar
  36. 36.
    Mireles JPII, Toguchi A, Harshey RM (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854CrossRefGoogle Scholar
  37. 37.
    Molitt MC, Neilan BA (2000) The expansion of mechanistic and organismic diversity associated with non-ribosomal peptides. FEMS Microbiol Lett 191:159–167CrossRefGoogle Scholar
  38. 38.
    Moran A, Alajendra M, Martinez F (2002) Quantification of surfactin in culture supernatant by haemolytic activity. Biotechnol Lett 24:177–180CrossRefGoogle Scholar
  39. 39.
    Morikawa M, Daido H, Takao T, Marato S, Shimonishi Y, Imanaka T (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS 38. J Bacteriol 175:6459–6466Google Scholar
  40. 40.
    Mortishire-Smith RJ, Nutkins JC, Packman LC, Brodey CL, Rainey PB, Jhonson K, Williams DH (1991) Determination of the structure of an extracellular peptide produced by the mushroom saprotroph Pseudomonas reactans. Tetrahedron 47:3645–3654CrossRefGoogle Scholar
  41. 41.
    Mulligan CN (2005) Environmental applications of biosurfactants. Environ Pollut 133:183–198CrossRefGoogle Scholar
  42. 42.
    Mulligan CN, Cooper DG, Neufeld RJ (1989) Selection of microbes producing biosurfactants in media without hydrocarbons. J Ferment Technol 62:311–314Google Scholar
  43. 43.
    Ouled Hadder H, El-Gilawi MH, Aziz GM (2004) Extraction and purification of bacitracin by the locally isolated Bacillus licheniformis bacteria and study of its antimicrobial activity. Iraqi J Biotechnol 2:82–93Google Scholar
  44. 44.
    Paraszkiewicz K, Kanwal A, Dlugonski J (1992) Emulsifier production by steroid transforming filamentous fungus Curvularia lunata. Growth and product characterization. J Biotechnol 92:287–294CrossRefGoogle Scholar
  45. 45.
    Poremba K, Gunkel W, Lang S, Wagner F (1991) Marine biosurfactants. III. Toxicity testing with marine microorganisms and comparison with synthetic surfactants. Z Naturforschung C 460:210–216Google Scholar
  46. 46.
    Robert M, Mercade ME, Bosch MP, Parra JL, Espuny MJ, Manresa MA, Guinea J (1989) Effect of carbon source on biosurfactant production by Pseudomonas aeruginosa. Biotechnol Lett 11:871–874CrossRefGoogle Scholar
  47. 47.
    Rodrigues L, Banat IM, Teixeria J, Oliveira R (2006) Biosurfactants potential application in medicine. J Antimicrob Chemother 57:609–618CrossRefGoogle Scholar
  48. 48.
    Rosenberg E, Ron EZ (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236CrossRefGoogle Scholar
  49. 49.
    Sadasivam S, Manickam A (1991) Biochemical methods, 2nd edn. New Age International Limited, Chennai, pp 24–25Google Scholar
  50. 50.
    Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide containing symbiont of the marine sponge Theonella swinhoeii as a novel δ-Proteobacterium, “Candidatus Entotheonella palauensis”. Mar Biol 136:969–977CrossRefGoogle Scholar
  51. 51.
    Selvin J, Priya SS, Kiran G, Thangavelu T, Bai NS (2008) Sponge associated marine bacteria as indicators of heavy metal pollution. Microbiol Res (in press). doi:10.1016/j.micres.2007.05.005
  52. 52.
    Sen R (1993) Response surface optimization of the critical media components for the production of surfactin. J Chem Technol Biotechnol 68:263–270CrossRefGoogle Scholar
  53. 53.
    Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146CrossRefGoogle Scholar
  54. 54.
    Tsuge K, Ano T, Shado M (1996) Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics lipastatin b and surfactin in Bacillus subtilis YB8. Arch Microbiol 165:243–251CrossRefGoogle Scholar
  55. 55.
    Wang QG, Garrity M, Tiedje JM, Cole JR (2007) Naïve Bayesian Classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefGoogle Scholar
  56. 56.
    Wilkinson CR (1978) Microbial association in sponges. Ecology, physiology and microbial populations of coral reef. Mar Biol 49:161–167CrossRefGoogle Scholar
  57. 57.
    Wilkinson CR (1987) Significance of microbial symbionts in sponge evolution and ecology. Symbiosis 4:135–146Google Scholar
  58. 58.
    Yakimov MM, Timmis KN, Wray V, Friedrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS 50. Appl Environ Microbiol 61:1706–1713Google Scholar
  59. 59.
    Youssef NH, Dunacn KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganism. J Microbiol Methods 56:339–347CrossRefGoogle Scholar
  60. 60.
    Zajic JE, Grignard H, Gerson DF (1977) Properties and degradation of a bioemulsifier from Cornyebacterium hydrocarboclastus. Biotechnol Bioeng 19:1303–1320CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • R. Gandhimathi
    • 1
  • G. Seghal Kiran
    • 2
  • T. A. Hema
    • 1
  • Joseph Selvin
    • 1
  • T. Rajeetha Raviji
    • 1
  • S. Shanmughapriya
    • 1
  1. 1.Department of MicrobiologyBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of BiotechnologyBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations