Skip to main content
Log in

Quorum quenching analysis in Pseudomonas aeruginosa and Escherichia coli: network topology and inhibition mechanism effect on the optimized inhibitor dose

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The discovery of quorum sensing as a mechanism for regulating specific phenotypes in bacteria based on population density has conveyed attention to find molecules capable of interfering quorum sensing networks (QSN) in a process coined quorum quenching. Here, we examined the dynamics of Escherichia coli AI-2 and Pseudomonas aeruginosa QSN exposed to signal degraders or competitors for binding transcriptional regulators. Stability analysis was performed for E. coli and P. aeruginosa finding no multistability in E. coli. However, our model allowed to discern that quenchers influence P. aeruginosa QSN multistability by reducing the interval of the amount of molecules of the extracellular signal that originate several steady states. We proposed a simulated annealing algorithm to optimize the quencher dose based on stochastic kinetics. E. coli QSN requires around 640 while P. aeruginosa QSN needs 253 quencher molecules per microorganism. This dose was found to be negatively influenced by the quencher-signal affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barrios AFG, Bentley WE, Hashimoto Y, Yang L, Wood TK (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188:305–316

    Article  CAS  Google Scholar 

  2. Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587

    Article  CAS  Google Scholar 

  3. Cho H-S, Park S-Y, Ryu C-M, Kim JF, Kim J-G, Park S-H (2007) Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol Ecol 60:14–23

    Article  CAS  Google Scholar 

  4. Defoirdt T, Miyamoto CM, Wood TK, Meighen EA, Sorgeloos P, Verstraete W, Bossier P (2007) The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein LuxR. Environ Microbiol 9:2486–2495

    Article  CAS  Google Scholar 

  5. Dhooge A, Govaerts W, Kuznetsov YA (2003) MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw 29:141–164

    Article  Google Scholar 

  6. Dong Y-H, Zhang X-F, Xu J-L, Zhang L-H (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960

    Google Scholar 

  7. Fagerlind MG, Nilsson P, Harlen M, Karlsson S, Rice SA, Kjelleberg S (2005) Modeling the effect of acylated homoserine lactone antagonists in Pseudomonas aeruginosa. Biosystems 80:201–213

    Article  CAS  Google Scholar 

  8. Fagerlind MG, Riceb SA, Nilssona P, Harléna M, James S, Charltonb T, Kjelleberg S (2003) The role of regulators in the expression of quorum-sensing signals in Pseudomonas aeruginosa. J Mol Biol Biotechnol 6:88–100

    CAS  Google Scholar 

  9. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    CAS  Google Scholar 

  10. Goryachev AB, Toh DJ, Lee T (2006) Systems analysis of a quorum sensing network: design constraints imposed by the functional requirements, network topology and kinetic constants. Biosystems 83:178–187

    Article  CAS  Google Scholar 

  11. Goryachev AB, Toh D-J, Wee KB, Lee T, Zhang H–B, Zhang L-H (2005) Transition to quorum sensing in an agrobacterium population: a stochastic model. PLoS Comput Biol 1:e37

  12. Guillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434

    Article  Google Scholar 

  13. Hambraeus G, Wachenfeldt CV, Hederstedt L (2003) Genome-wide survey of mRNA half-lives in Bacillus subtilis identifies extremely stable mRNAs. Mol Gen Genet 269:706–714

    CAS  Google Scholar 

  14. Hentzer M, Riddel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Hoiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102

    CAS  Google Scholar 

  15. Kierzek AM, Zaim J, Zielenkiewicz P (2001) The effect of transcription and translation initiation frequencies on the stochastic fluctuations in prokaryotic gene expression. J Biol Chem 276:8165–8172

    Article  CAS  Google Scholar 

  16. Manefield M, Rasmussen TB, Hentzer M, Anderson JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127

    CAS  Google Scholar 

  17. Milferstedt K, Pons M-N, Morgenroth E (2006) Optical method for long-term and large-scale monitoring of spatial biofilm development. Biotechnol Bioeng 94:774–782

    Article  Google Scholar 

  18. Nealson KH, Hastings JW (1979) Bacterial biolominescence: its control and ecological significance. Microbiol Rev 43:496–518

    CAS  Google Scholar 

  19. Neidhardt FC (ed) (1996) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn, vol. 2. ASM Press, Washington

  20. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 2:295–304

    Article  Google Scholar 

  21. Parsek MR, Val DL, Hanzelka BL, Cronan JEJ, Greenberg EP (1999) Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci USA 96:4360–4365

    Article  CAS  Google Scholar 

  22. Pratt JM, Petty J, Riba-Garcia I, Robertson DHL, Gaskell SJ, Oliver SG, Beynon RJ (2002) Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell Proteomics 1:579–591

    Article  CAS  Google Scholar 

  23. Rasmussen TB, Bjarnsholt TB, Skindersoe ME, Hentzer M, Kristoffersen P, Köte M, Nielsen J, Eberl L, Givskov M (2005) Screening of Quorum-Sensing inhibitors (QSI) by use of a novel genetic system, the QSI detector. J Bacteriol 187:1799–1814

    Article  CAS  Google Scholar 

  24. Ramsey S, Orrell D, Bolouri H (2005) Dizzy: stochastic simulation of large-scale genetic regulatory networks. J Bioinform Comput Biol 2:415–436

    Article  Google Scholar 

  25. Ren D, Bedzyk L, Ye RW, Thomas S, Wood TK (2004) Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol Bioeng 88:630–642

    Article  CAS  Google Scholar 

  26. Ren D, Sims JJ, Wood TK (2002) Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Lett Appl Microbiol 34:293–299

    Article  CAS  Google Scholar 

  27. Ren D, Sims JJ, Wood TK (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Environ Microbiol 3:731–736

    Article  CAS  Google Scholar 

  28. Sperandio V, Torres AG, Giron JA, Kaper JB (2001) Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 183:5187–5197

    Article  CAS  Google Scholar 

  29. Srivastava R, Peterson SM, Bentley WE (2001) Stochastic kinetic analysis of the Escherichia coli stress circuit using sigma(32)-targeted antisense. Biotechnol Bioeng 75:120–129

    Article  CAS  Google Scholar 

  30. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  Google Scholar 

  31. Taga ME (2007) Bacterial signal destruction. ACS Chem Biol 2:89–92

    Article  CAS  Google Scholar 

  32. Thattai M, Oudenaarden AV (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci USA 98:8614–8619

    Google Scholar 

  33. Vlamakis HC, Kolter R (2005) Thieves, assassins and spies of the microbial world. Nat Cell Biol 7:933–934

    Article  CAS  Google Scholar 

  34. Wang L, Hashimoto Y, Tsao C-Y, Valdes JJ, Bentley WE (2005) Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli. J Bacteriol 187:2066–2076

    Article  CAS  Google Scholar 

  35. Wang L, Li J, March JC, Valdes JJ, Bentley WE (2005) luxS-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J Bacteriol 187:8350–8360

    Article  CAS  Google Scholar 

  36. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Develop Biol 21:319–346

    Article  CAS  Google Scholar 

  37. Xavier KB, Bassler BL (2005) Interference with AI-2-mediated bacterial cell-cell communication. Nature 437:750–753

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.F.G.B was supported by a Fulbright scholarship

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Fernando González Barrios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrios, A.F.G., Covo, V., Medina, L.M. et al. Quorum quenching analysis in Pseudomonas aeruginosa and Escherichia coli: network topology and inhibition mechanism effect on the optimized inhibitor dose. Bioprocess Biosyst Eng 32, 545–556 (2009). https://doi.org/10.1007/s00449-008-0276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0276-7

Keywords

Navigation