Skip to main content
Log in

Electrochemical nitrite biosensor based on the immobilization of hemoglobin on an electrode modified by multiwall carbon nanotubes and positively charged gold nanoparticle

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The report is on an electrochemical biosensor with remarkably improved sensitivity toward nitrite. In this strategy, positively charged gold nanoparticle (PCNA) is used in combination with multiwall carbon nanotubes (MWCNT) by electrostatic adsorption for fabricating PCNA/MWCNT films. Then hemoglobin (Hb) biocatalyst will easily be attached to the surface of the combination films aforementioned. After that, the Hb/PCNA films are immobilized onto the Hb/PCNA/MWCNT films through layer-by-layer assembly technique. The (Hb/PCNA)2/MWNT/GC electrode thus prepared exhibits enhanced electrocatalytic behavior to the reduction of nitrite at −0.10 V versus SCE in 0.05 M H2SO4 solution. On condition of the low detecting potential and low pH, interference caused by direct electrochemical oxidation or oxidizable substances can be prevented. Therefore, the modified electrode shows fast response time, very high sensitivity, good selectivity and stability. The current response of the sensor increases linearly with nitrite concentration from a range of 3.6 × 10−6 to 3.0 × 10−3 M with a detection limit(S /N = 3) of 9.6 × 10−7 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu X, Ying XH, Duan BW (2007) Determination of nitrite and nitrate in pickled vegetables by ion chromatography with ultraviolet detection. Food Ferment Ind (in Chinese) 33:120–122

    Google Scholar 

  2. Wang XY, Xiang XH, Tu XM, Kang JX (2002) Determination of the residual nitrate/nitrite in foods by UV detection-ion chromatography. Chem Anal Meter (in Chinese) 1128–1129

  3. Guo ML, Chen JH, Li J, Tao B, Yao SZ (2005) Fabrication of polyaniline of carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite. Anal Chim Acta Anal Chim Acta 532:71–77

    Article  CAS  Google Scholar 

  4. Wang Sf, Du D (2003) Preparation and electrochemical properties of Keggin-type phosphomolybdic anions in electrostatically linked l-cysteine self-assembled monolayers. Sens Actuators B 94:282–289

    Article  Google Scholar 

  5. Zhao YD, Zhang WD, Luo QM, Li SFY (2003) The oxidation and reduction behavior of nitrite at carbon nanotube powder microelectrodes. Microchem J 75:189–198

    Article  CAS  Google Scholar 

  6. Wei S, Wang DD, Gao RF, Jiao K (2007) Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode. Electrochem Commun 9:1159–1164

    Article  Google Scholar 

  7. Zhao S, Zhang K, Sun YY, Sun CQ (2006) Hemoglobin/colloidal silver nanoparticles immobilized in titania sol–gel film on glassy carbon electrode: direct electrochemistry and electrocatalysis. Bioelectrochemistry 69:10–15

    Article  CAS  Google Scholar 

  8. Chen L, Lu GX (2006) Direct electrochemistry and electrocatalysis of hybrid film assembled by polyelectrolyte–surfactant polymer, carbon nanotubes and hemoglobin. J of Electroanal Chem 597:51–59

    Article  CAS  Google Scholar 

  9. Safavi A, Maleki N, Moradlou O, Sorouri M (2008) Direct electrochemistry of hemoglobin and its electrocatalytic effect based on its direct immobilization on carbon ionic liquid electrode. Electrochem Commun 10:420–423

    Article  CAS  Google Scholar 

  10. Yao H, Li N, Xu JZ, Zhu JJ (2007) Direct electrochemistry and electrocatalysis of hemoglobin in gelatine film modified glassy carbon electrode. Talanta 71:550–554

    Article  CAS  Google Scholar 

  11. Lai J, Shafi KVPM, Ulman A, Loos K, Popovitz-Biro R, Lee Y, Vogt T, Estourmes C (2005) One-step synthesis of core(Cr)/shell(r-Fe2O3) nanoparticles. J Am Chem Soc 127:5730–5731

    Article  CAS  Google Scholar 

  12. Zhang LY, Yuan R, Huang XQ, Chai YQ, Cao SR (2004) Potentiometric immunosensor based on antiserum of Japanese B encephalitis immobilized in nano-Au/polymerized o-phenylenediamine film. Electrochem Commun 6:1222–1226

    Article  CAS  Google Scholar 

  13. Gittins DI, Caruso F (2001) Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew Chem Int Ed 40:3001–3004

    Article  CAS  Google Scholar 

  14. Zhang LY, Yuan R, Chai YQ, Li XL (2007) Investigation of the electrochemical and electrocatalytic behavior of positively charged gold nanoparticle and l-cysteine film on an Au electrode. Anal Chim Acta 596:99–105

    Article  CAS  Google Scholar 

  15. Lim SH, Wei J, Lin JY, Li QT, You JK (2005) Glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosens Bioelectron 20:2341–2346

    Article  CAS  Google Scholar 

  16. Yu RQ, Chen LW, Liu QP, Lin JY, Tan K-L, Ng SC, Chan Hardy SO, Xu G-Q, Andy Hor TS (1998) Platinum deposition on carbon nanotubes via chemical modification. Chem Mater 10:718–722

    Google Scholar 

  17. Guo DJ, Li HL (2005) Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon 43:1259–1264

    Article  CAS  Google Scholar 

  18. Yuan R, Zhang LY, Chai YQ, Li QF, Cao SR (2005) A label-free amperometric immunosensor based on multi-layer assembly of polymerized o-phenylenediamine B encephalitis vaccine. Anal Chim Acta 531:1–5

    Article  CAS  Google Scholar 

  19. Zhang LY, Yuan R, Huang XQ, Chai YQ, Cao SR (2005) A new label-free amperometric immunosenor for rubella vaccine. Anal Bioanal Chem 381:1036–1040

    Article  CAS  Google Scholar 

  20. Zhang LY, Yuan R, Chai YQ, Chen SH, Wang N (2006) Layer-by-layer self-assembly of films of nano-Au and Co(bpy)33+ for the determination of Japanese B encephalitis vaccine. Biochem Eng J 28:231–236

    Article  Google Scholar 

  21. Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by nation toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408–2409

    Article  CAS  Google Scholar 

  22. Hrapovuc S, Liu Y, Male KB, Luong JHT (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76:1083–1088

    Article  Google Scholar 

  23. Chen ZG, Tang DY (2007) Antigen–antibody interaction from quartz crystal microbalance immunosensors based on magnetic CoFe2O4/SiO2 composite nanoparticle-functionalized biomimetic interface. Bioprocess Biosys Eng 30:243–249

    Article  CAS  Google Scholar 

  24. Kim BH, Ok SH, Cho DL, Lim SH, Yoo SY, KooK JK, Cho YI, Ohk SH, Ko YM (2007) Sterilization effects of a TiO2 photocatalytic film against a Streptococcus mutans culture. Bioprocess Biosys Eng 12: 136–139

  25. Shi JH, Qin YJ, Wu W, Li XL, Guo ZX, Zhu DB (2004) In situ synthesis of CdS nanoparticles on multi-walled carbon nanotubes. Carbon 42:455–458

    Article  CAS  Google Scholar 

  26. Reddy ALM, Rajalakshmi N, Ramaprabhu S (2008) Gobalt-polyprrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells. Carbon 46:2–11

    CAS  Google Scholar 

  27. Padigi SK, Reddy RKK, Prasad S (2007) Carbon nanotube based aliphatic hydrocarbon sensor. Biosens Bioelectron 22:829–837

    Article  CAS  Google Scholar 

  28. Lin Y, Taylor S, Li H, Fernando KAS, Qu L, Wang W, Gu L, Zhou S, Sun YP (2004) Advances toward bioapplications of carbon nanotubes. J Mater Chem 14:527–541

    Article  CAS  Google Scholar 

  29. Sotiropoulou S, Chaniotakis NA (2003) Carbon nanotube array-based biosensor. Anal Bioanal Chem 375:103–105

    CAS  Google Scholar 

  30. Shim M, Javey A, Kam NWS, Dai H (2001) Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J Am Chem Soc 123:11512–11513

    Article  CAS  Google Scholar 

  31. Wang J, Li M, Shi Z, Gu N (2002) Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotube. Anal Chem 74:1993–1997

    Article  CAS  Google Scholar 

  32. Wang ZH, Liu MJ, Liang Q, Wang Y, Luo G (2002) Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst 127:653–658

    Article  CAS  Google Scholar 

  33. Luo XL, Killard Anthony J, Morrin A, Smyth MR (2006) Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline. Anal Chim Acta 575:39–44

    Article  CAS  Google Scholar 

  34. Choi HN, Lee JY, Lyu YK, Lee W-Y (2006) Tris(2, 2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor based on carbon nanotube dispersed in sol–gel-derived titania–Nafion composite films. Anal Chim Acta 565:48–55

    Article  CAS  Google Scholar 

  35. Kim B, Sigmund W (2004) Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir 20:8239–8242

    Article  CAS  Google Scholar 

  36. Lawrenc NS, Wang J (2006) Chemical adsorption of phenothiazine dyes onto carbon nanotubes: toward the low potential detection of NADH. Electrochem Commun 8:71–76

    Article  Google Scholar 

  37. Guo ML, Chen JH, Nie LH, Yao SZ (2004) Electrostatic assembly of calf thymus DNA on multi-walled carbon nanotube modified gold electrode and its interaction with chlorpromazine hydrochloride. Electrochim Acta 49:2637–2643

    Article  CAS  Google Scholar 

  38. Dujardin E, Ebbesen TW, Hiura H, Tanigaki K (1994) Capillarity and wetting of carbon nanotubes. Science 265:1850–1851

    Article  CAS  Google Scholar 

  39. Lordi V, Yao N, Wei J (2001) Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem Mater 13:733–737

    Article  CAS  Google Scholar 

  40. Kong J, Chapline MG, Dai HJ (2001) Full and modulated chemical gating of individual carbon nanotubes by organic amine compounds. J Phys Chem 13:1384–2893

    CAS  Google Scholar 

  41. Zhang LY, Yuan R, Chai YQ, Cao SR, Li XL, Wang N (2006) Study on a hydrogen peroxide sensor based on horseradish peroxidase/nano-Au/horseradish peroxidase/multi-walled carbon nanotubes (in Chinese). Acta Chim Sinica 64:1711–1715

    CAS  Google Scholar 

  42. Gu HY, Yu AM, Chen HY (2001) Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode. J Electroanal Chem 516:119–126

    Article  CAS  Google Scholar 

  43. Zhang JD, Oyama MJ (2005) Gold nanoparticle-attached ITO as a biocompatible matrix for myoglobin immobilization: direct electrochemistry and catalysis to hydrogen peroxide. Electroanal Chem 577:273–279

    Article  CAS  Google Scholar 

  44. Liu SQ, Ju HX (2002) Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode. Anal Biochem 307:110–116

    Article  CAS  Google Scholar 

  45. Chen CC, Chen CF, Chen CM, Chuang FT (2007) Modification of multi-walled carbon nanotubes by microwave digestion method as electrocatalyst supports for direct methanol fuel cell applications. Electrochem Commun 9:159–163

    Article  Google Scholar 

  46. Stolarczyk K, Nazaruk E, Rogalski J, Bilewicz R (2007) Mediatorless catalytic oxygen reduction at boron-doped diamond electrodes. Electrochem Commun 9:115–118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Education Committee Foundation of Chongqing City, China (KJ070104), the Education Committee Foundation of Chongqing City, China (KJ070103), the Moe Key Luminescence and Real-Time Analysis, Chongqing (CSTC,2006CA8006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Yi, M. Electrochemical nitrite biosensor based on the immobilization of hemoglobin on an electrode modified by multiwall carbon nanotubes and positively charged gold nanoparticle. Bioprocess Biosyst Eng 32, 485–492 (2009). https://doi.org/10.1007/s00449-008-0268-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0268-7

Keywords

Navigation