Skip to main content
Log in

Dynamic microbial response under ethanol stress to monitor Saccharomyces cerevisiae activity in different initial physiological states

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Dynamic Saccharomyces cerevisiae responses to increasing ethanol stresses were investigated to monitor yeast viability and to optimize bioprocess performance when gradients occurred due to the specific configuration of multi-stage bioreactors with cell recycling or of large volume industrial bioreactors inducing chemical heterogeneities. Twelve fed-batch cultures were carried out with initial ethanol concentrations (P in) ranging from 5 g l−1 to 110 g l−1 with three different inoculums in different physiological states in terms of viability and quantity of ethanol produced (P o). For a given initial cell viability of 50%, the time to reach the maximum growth rate and maximum ethanol production rate was dependent on the difference P in − P o. Whatever the initial physiological state, when the initial ethanol concentration P in reached 100 g l−1, the yeasts died. Experimental results showed that the initial physiological state of the yeast was the major parameter to determine, the microorganisms’ capacities to adapt and resist environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alfenore S, Molina-Jouve C, Guillouet SE, Uribelarrea JL, Goma G, Benbadis L (2002) Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl Microbiol Biotechnol 60:67–72

    Article  CAS  Google Scholar 

  2. Aguilera A, Peinado RA, Millan C, Ortega JM, Mauricio JC (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42

    Article  CAS  Google Scholar 

  3. Bai FW, Chen LJ, Zhang Z, Anderson WA, Moo-Young M (2004) Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. J Biotechnol 110:287–293

    Article  CAS  Google Scholar 

  4. Canetta E, Adya AK, Walker GM (2006) Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology. FEMS Microbiol Lett 255:308–319

    Article  CAS  Google Scholar 

  5. Casey GP, Ingledew WM (1986) Ethanol tolerance in yeasts. CRC Crit Rev Microbiol 13:219–280

    Article  CAS  Google Scholar 

  6. D’Amore T, Panchal CJ, Russell I, Stewart GG (1990) Ethanol tolerance in yeast. Crit Rev Biotechnol 9:287–304

    Article  Google Scholar 

  7. D’Amore T, Stewart GG (1987) Ethanol tolerance of yeast. Enz Microb Technol 9:322–329

    Article  Google Scholar 

  8. Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shioya S (2007) Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131:34–44

    Article  CAS  Google Scholar 

  9. Hu XH, Wang MH, Tan T, Li JR, Yang H, Leach L, Zhang RM, Luo ZW (2006) Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Gen Soc Ame 175:1479–1487

    Google Scholar 

  10. Mota JM (1985) Inhibition et fermentation alcoolique: quelques concepts non conventionnels. Institut National des Sciences Appliquees de Toulouse. PhD Thesis

  11. Navarro JM (1980) Levures immobilisées: croissance et métabolisme, fermentation alcoolique. PhD thesis, University Paul Sabatier Toulouse

  12. Oliveira SC, Paiva TCB, Visconti AZS, Giudici R (1999) Continuous alcoholic fermentation process: model considering loss of cell viability. Bioproc Eng 20:157–160

    Article  CAS  Google Scholar 

  13. Sharma CS (1997) A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 152:11–15

    Article  CAS  Google Scholar 

  14. Strehaiano P (1984) Phénomènes d’inhibition et fermentation alcoolique. PhD thesis, Institut National des Sciences Appliquees de Toulouse

  15. Wei P, Li Z, Lin Y, He P, Jiang N (2007) Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment. Biotechnol Lett 29:1501–1508

    Article  CAS  Google Scholar 

  16. Countinho JAP, Belo I, Ferrerira EC, Coelho MAZ (2005) Assessment of yeast viability under hyperbaric conditions through a modeling approach. J Chem Tech Biotechnol 80:872–877

    Article  Google Scholar 

  17. Kitagaki H, Araki Y, Funato K, Shimoi H (2007) Ethanol induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett 581:2935–2942

    Article  CAS  Google Scholar 

  18. Pina C, Santos C, Couto JA, Hogg T (2004) Ethanol tolerance of five non-Saccharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae—influence of different culture conditions. Food Microbiol 21:439–447

    Article  CAS  Google Scholar 

  19. Dombek KM, Ingram LO (1987) Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH. Appl Environ Microbiol 53:1286–1291

    CAS  Google Scholar 

  20. Kalmokoff ML, Ingledew WM (1985) Evolution of ethanol tolerance in select Saccharomyces strains. Am Soc Brew Chem Inc 43:189–196

    CAS  Google Scholar 

  21. Nagodawithana TW, Steinkraus KH (1976) Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in “rapid fermentation”. Appl Environ Microbiol 31:158–162

    CAS  Google Scholar 

  22. Alfenore S, Cameleyre X, Benbadis L, Bideaux C, Uribelarrea JL, Goma G, Molina-Jouve C, Guillouet SE (2004) Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl Microbiol Biotechnol 63:537–542

    Article  CAS  Google Scholar 

  23. Ben Chaabane F, Aldiguier AS, Alfenore S, Cameleyre X, Blanc P, Bideaux C, Guillouet SE, Roux G, Molina-Jouve C (2006) Very high ethanol productivity in an innovative continuous two-stage bioreactor with cell recycle. Bioprocess Biosyst Eng 29:49–57

    Article  CAS  Google Scholar 

  24. Alan EW, Basso LC, Denise M, Alves G, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17:482–487

    Article  Google Scholar 

  25. Cardona CA, Sanchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Biores Tech 98:2415–2457

    Article  CAS  Google Scholar 

  26. Aldiguier AS, Alfenore S, Cameleyre X, Goma G, Uribelarrea JL, Guillouet SE, Molina-Jouve C (2004) Synergistic temperature and ethanol effet on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production. Bioprocess Biosyst Eng 26:217–222

    Article  CAS  Google Scholar 

  27. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    CAS  Google Scholar 

  28. Postgate JR (1967) Viable counts and viability. Methods in Microbiology. Academic Press. 611–628

  29. Nielsen LK, Smyth GK, Greenfield PF (1991) Hematocytometer cell count distributions: implications of non-Poisson behavior. Biotechnol Prog 7:560–563

    Article  Google Scholar 

  30. Lei J, Zhao X, Ge X, Bai F (2007) Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution. J Biotechnol 131:270–275

    Article  CAS  Google Scholar 

  31. Wang M, Zhao J, Yang Z, Du Z, Yang Z (2007) Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae. Bioelectrochem 71:107–112

    Article  CAS  Google Scholar 

  32. Watanabe M, Tamura K, Magbanua JP, Takano K, Kitamoto K, Kitagaki H, Akao T, Shimoi H (2007) Elevated expression of genes under the control of Stress Response element (STRE) and Msn2p in an Ethanol-Tolerance Sake yeast Kyokai No. 11. J Biosc Bioeng 104:163–170

    Article  CAS  Google Scholar 

  33. Ghose TK, Tyagir D (1979) Rapid ethanol fermentation of cellulose hydrolysate: product and substrate inhibition and optimisation of fermentation. Biotechnol Bioeng 21:1401–1420

    Article  CAS  Google Scholar 

  34. Dasari G, Worth MA, Connor MA, Pamment NB (1990) Reasons for the apparent difference in the effects of produced and added ethanol on culture viability during rapid fermentations by Saccharomyces cerevisiae. Biotechnol Bioeng 35:109–122

    Article  CAS  Google Scholar 

  35. Alfenore S-Bideaux C, Cameleyre X, Molina-Jouve C, Uribelarrea JL, Guillouet SE (2006) Minimization of glycerol production during the high performance fed-batch ethanolic fermentation process in Saccharomyces cerevisiae using a metabolic model as prediction tool. Appl Environ Microbiol 72:2134–2140

    Article  Google Scholar 

  36. Bakker BM, Overkamp KM, Van Maris AJ, Kotter P, Luttik MA, Van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37

    Article  CAS  Google Scholar 

  37. Wang ZX, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19:201–223

    Article  CAS  Google Scholar 

  38. Medawar W, Strehaiano P, Delia ML (2003) Yeast growth: lag phase modeling in alcoholic media. Food Microbiol 20:527–532

    Article  CAS  Google Scholar 

  39. Pina C, Antonio J, Hogg T (2004) Inferring ethanol tolerance of Saccharomyces and non-Saccharomyces yeasts by progressive inactivation. Biotechnol Lett 26:1521–1527

    Article  CAS  Google Scholar 

  40. Vriesekoop F, Pamment NB (2005) Acetaldehyde addition and pre-adaptation to the stressor together virtually eliminate the ethanol-induced lag phase in Saccharomyces cerevisiae. Lett Appl Microbiol 41:424–427

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors want to thank the Microbial Engineering Team LISBP INSA INRA UMR792, CNRS UMR5504 for their experimental support, especially Julie Lesage CNRS Technician. This work was supported by The French National Agency for Research through the IdyBiopBiop program and The Mexican National Council for Science and Technology (CONACyT) through master and doctoral scholarship supports. Ours thanks to Peter Winterton of “Paul Sabatier” University for his remarks on the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Alfenore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez-Gonzalez, Y., Cameleyre, X., Molina-Jouve, C. et al. Dynamic microbial response under ethanol stress to monitor Saccharomyces cerevisiae activity in different initial physiological states. Bioprocess Biosyst Eng 32, 459–466 (2009). https://doi.org/10.1007/s00449-008-0265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0265-x

Keywords

Navigation