Skip to main content
Log in

Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Production of recombinant versatile peroxidase in Aspergillus hosts was optimized through the modification of temperature during bioreactor cultivations. To further this purpose, the cDNA encoding a versatile peroxidase of Pleurotus eryngii was expressed under control of the alcohol dehydrogenase (alcA) promoter of Aspergillus nidulans. A dependence of recombinant peroxidase production on cultivation temperature was found. Lowering the culture temperature from 28 to 19 °C enhanced the level of active peroxidase 5.8-fold and reduced the effective proteolytic activity twofold. Thus, a maximum peroxidase activity of 466 U L-1 was reached. The same optimization scheme was applied to a recombinant Aspergillus niger that bore the alcohol dehydrogenase regulator (alcR), enabling transformation with the peroxidase cDNA under the same alcA promoter. However, with this strain, the peroxidase activity was not improved, while the effective proteolytic activity was increased between 3- and 11-fold compared to that obtained with A. nidulans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kirk TK, Farrell RL (1987) Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  2. Hammel KE (1992) In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 28. Degradation of environmental pollutants by microorganisms and their metalloenzymes. Dekker, NY, pp 41–60

  3. Cai DY, Tien M (1993) J Biotechnol 30:79–90

    Article  CAS  Google Scholar 

  4. Tien M., Kirk TK (1983) Burds Science 221:661–663

    Article  CAS  Google Scholar 

  5. Glenn JK, Morgan MA MB, Kuwahara M, Gold MH (1983) Biochem Biophys Res Commun 114:1077–1083

    Article  CAS  Google Scholar 

  6. Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) FEBS Lett 169:247–250

    Article  CAS  Google Scholar 

  7. Hatakka A (1994) FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  8. Peláez F, Martínez MJ, Martínez AT (1995) Mycol Res 99:37–42

    Google Scholar 

  9. Martínez MJ, Ruiz-Dueñas FJ, Guillén F, Martínez AT (1996) Eur J Biochem 237:424–432

    Article  Google Scholar 

  10. Mester T, Field JA (1998) J Biol Chem 273:15412–15417

    Article  CAS  Google Scholar 

  11. Heinfling A, Ruiz-Dueñas FJ, Martínez MJ, Bergbauer M, Szewzyk U, Martínez AT (1998) FEBS Lett 428:141–146

    Article  CAS  Google Scholar 

  12. Ruiz-Dueñas FJ, Martínez MJ, Martínez AT (1999) Mol Microbiol 31:223–236

    Article  Google Scholar 

  13. Camarero S, Ruiz-Dueñas FJ, Sarkar S, Martínez MJ, Martínez AT (2000) FEMS Microbiol Lett 191:37–43

    Article  CAS  Google Scholar 

  14. Ruiz-Dueñas FJ, Martínez MJ, Martínez AT (1999) Appl Environ Microbiol 65:4705–4707

    Google Scholar 

  15. Gouka RJ, Punt PJ, van den Hondel CAMJJ (1997) Appl Microbiol Biotechnol 47:1–11

    Article  CAS  Google Scholar 

  16. Johnson TM, Pease EA, Li JKK, Tien M (1992) Arch Biochem Biophys 296:660–666

    Article  CAS  Google Scholar 

  17. Whitwam R, Tien M (1996) Arch Biochem Biophys 333:439–446

    Article  CAS  Google Scholar 

  18. Doyle WA, Smith AT (1996) Biochem J 315:15–19

    CAS  Google Scholar 

  19. Gu L, Lajoie C, Kelly C (2003) Biotechnol Prog 19:1403–1409

    Article  CAS  Google Scholar 

  20. Stewart P, Whitwam RE, Kersten PJ, Cullen D, Tien M (1996) Appl Environ Microbiol 62:860–864

    CAS  Google Scholar 

  21. Aifa MS, Sayadi S, Gargouri A (1999) Biotechnol Lett 21:849–853

    Article  CAS  Google Scholar 

  22. Conesa A, van den Hondel CAMJJ, Punt PJ (2000) Appl Environ Microbiol 66:3016–3023

    Article  CAS  Google Scholar 

  23. Larrondo LF, Lobos S, Stewart P, Cullen D, Vicuña R (2001) Appl Environ Microbiol 67:2070–2075

    Article  CAS  Google Scholar 

  24. Conesa A, Jeenes D, Archer DB, van den Hondel CAMJJ, Punt PJ (2002) Appl Environ Microbiol 68:846–851

    Article  CAS  Google Scholar 

  25. Elrod SL, Cherry JR, Jones A (2001) Method for increasing hemoprotein production in filamentous fungi. US Patent No. 6,261,827

  26. Lu-Chau TA, Ruiz-Dueñas FJ, Camarero S, Feijoo G, Martínez MJ, Lema JM, Martínez AT (2004) Bioprocess Biosyst Eng 26:287–293

    Article  CAS  Google Scholar 

  27. Cove DJ (1966) Biochim Biophys Acta 113:51–56

    CAS  Google Scholar 

  28. Punt PJ, van den Hondel CAMJJ (1992) Methods Enzymol 216:447–457

    Article  CAS  Google Scholar 

  29. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CAMJJ (1987) Gene 56:117–124

    Article  CAS  Google Scholar 

  30. Kimura Y, Asada Y, Kuwahara M (1990) Appl Microbiol Biotechnol 32:436–442

    Article  CAS  Google Scholar 

  31. van den Hombergh JP, van de Vondervoort PJ, van der Heijden NC, Visserl J (1995) Curr Genet 28:299–308

    Article  Google Scholar 

  32. Calera JA, Lopez-Medrano R, Ovejero MC, Puente P, Leal F (1994) Infect Immun 62:2322–2333

    CAS  Google Scholar 

  33. Cassland P, Jönsson LJ (1999) Appl Microbiol Biotechnol 52:393–400

    Article  CAS  Google Scholar 

  34. Hemila H, Pokkinen M, Palva I (1992) J Biotechnol 26:245–256

    Article  CAS  Google Scholar 

  35. Mongkolsuk S, Loprasert S, Vattanaviboon P, Chanvanichayachai C, Chamnongpol S, Supsamran N (1996) J Bacteriol 178:3578–3584

    CAS  Google Scholar 

  36. Kaufmann H, Mazur X, Fussenegger M, Bailey JE (1999) Biotechnol Bioeng 63:573–582

    Article  CAS  Google Scholar 

  37. Yun SI, Yahya AR, Cossar D, Anderson WA, Scharer JM, Moo-Young M (2001) Biotechnol Lett 23:1903–1905

    Article  CAS  Google Scholar 

  38. Rossini D, Porro D, Brambilla L, Venturini M, Ranzi BM, Vanoni M, Alberghina L (1993) Yeast 9:77–84

    Article  CAS  Google Scholar 

  39. Schein CH, Noteborn MHM (1988) Biotechnology 6:291–294

    Article  CAS  Google Scholar 

  40. Vasina JA, Baneyx F (1997) Protein Expr Purif 9:211–218

    Article  CAS  Google Scholar 

  41. Boule JB, Papanicolaou C, Rougeon (2000) Enhanced expression of heterologous proteins in recombinant bacteria through reduced growth temperature and co-expression of rare tRNA’s. European Patent EP1010763

  42. Roberts IN, Jeenes DJ, MacKenzie DA, Wilkinson AP, Sumner IG, Archer DB (1992) Gene 122:155–161

    Article  CAS  Google Scholar 

  43. Broekhuijsen MP, Mattern IE, Contreras R, Kinghorn JR, van den Hondel CA (1993) J Biotechnol 31:135–145

    Article  CAS  Google Scholar 

  44. Krasevec N, van de Hondel CA, Komel R (2000) Pflugers Arch 440(Suppl 5):R83–R85

    CAS  Google Scholar 

  45. Jarai G, Buxton F (1994) Curr Genet 26:238–244

    Article  CAS  Google Scholar 

  46. Katz ME, Masoumi A, Burrows SR, Shirtliff CG, Cheetham BF (2000) Genetics 156:1559–1571

    CAS  Google Scholar 

  47. Mattern IE, van Noort JM, van den Berg P, Archer DB, Roberts IN, van den Hondel CA (1992) Mol Gen Genet 234:332–336

    Article  CAS  Google Scholar 

  48. Wiebe MG, Karandikar A, Robson GD, Trinci AP, Candia JL, Trappe S, Wallis G, Rinas U, Derkx PM, Madrid SM, Sisniega H, Faus I, Montijn R, van den Hondel CA, Punt PJ (2001) Biotechnol Bioeng 76:164–174

    Article  CAS  Google Scholar 

  49. van den Hombergh JP, Fraissinet-Tachet L, van de Vondervoort PJ, Visser J (1997) Curr Genet 32:73–81

    Article  Google Scholar 

  50. Conesa A, van De Velde F, van Rantwijk F, Sheldon RA, van Den Hondel CA, Punt PJ (2001) J Biol Chem 276:17635–17640

    Article  CAS  Google Scholar 

  51. Conesa A, Punt PJ, van den Hondel CAMJJ (2002) J Biotechnol 93:143–158

    Article  CAS  Google Scholar 

  52. Ruiz-Dueñas FJ, Guillén F, Camarero S, Pérez-Boada M, Martínez MJ, Martínez AT (1999) Appl Environ Microbiol 65:4458–4463

    Google Scholar 

Download references

Acknowledgments

The authors thank M. A. Peñalva (CIB, CSIC, Madrid) for providing the A. nidulans strain and the plasmid palcA, B. Felenbock (University of Orsay, Paris) for the recombinant A. niger strain containing the alcA regulator, and P. J. Punt (TNO Voeding, Zeist, The Netherlands) for the PN7 vector. This work was partially supported by the EU contract “Fungal metalloenzymes oxidizing aromatic compounds of industrial interest” (QLK3-99-590), the Comunidad de Madrid, and the Spanish Commission of Science and Technology (BIO98-610 and BIO99-908).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Lú-Chau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eibes, G.M., Lú-Chau, T.A., Ruiz-Dueñas, F.J. et al. Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts. Bioprocess Biosyst Eng 32, 129–134 (2009). https://doi.org/10.1007/s00449-008-0231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0231-7

Keywords

Navigation