Skip to main content
Log in

Inulinase production in a batch bioreactor using agroindustrial residues as the substrate: experimental data and modeling

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The production of inulinase employing agroindustrial residues as the substrate is a good alternative to reduce production costs and to minimize the environmental impact of disposing these residues in the environment. This study focused on the use of a phenomenological model and an artificial neural network (ANN) to simulate the inulinase production during the batch cultivation of the yeast Kluyveromyces marxianus NRRL Y-7571, employing a medium containing agroindustrial residues such as molasses, corn steep liquor and yeast extract. It was concluded that due to the complexity of the medium composition it was rather difficult to use a phenomenological model with sufficient accuracy. For this reason, an alternative and more cost-effective methodology based on ANN was adopted. The predictive capacity of the ANN was superior to that of the phenomenological model, indicating that the neural network approach could be used as an alternative in the predictive modeling of complex batch cultivations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sangeetha PT, Ramesh MN, Prapulla SG (2005) Recent trends in the microbial production, analysis and application of fructooligosacharides. Trends Food Sci Technol 16:442–457

    Article  CAS  Google Scholar 

  2. Kalil SJ, Suzan R, Maugeri F, Rodrigues MI (2001) Optimization of inulinase production by Kluyveromyces marxianus using factorial design. Appl Biochem Biotechnol 94:257–264

    Article  CAS  Google Scholar 

  3. Silva-Santisteban BOY, Maugeri F (2005) Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus. Enzyme Microb Technol 36:717–724

    Article  CAS  Google Scholar 

  4. Treichel H (2004) Studies of the otimização of the production of inulinase for Kluyveromyces marxianus NRRL Y-7571 in half daily pay-treat industrials. PhD Thesis, Campinas State University-UNICAMP

  5. Sguarezi C, Longo C, Ceni G, Boni G, Mazutti MA, Treichel H (2007) Inulinase production by agroindustrial residues: acid pre-treatment of substrates and optimization of production. Food Bioprocess Technol. doi:10.1007/s11947-007-0042-x

  6. Mazutti MA, Bender JP, Di Luccio M, Treichel H (2006) Optimization of inulinase production by solid state fermentation using sugar cane bagasse. Enzyme Microb Technol 39:56–59

    Article  CAS  Google Scholar 

  7. Bender JP, Mazutti MA, Treichel H, Di Luccio M (2006) Inulinase production by Kluyveromyces marxianus NRRL Y–7571 using solid state fermentation. Appl Biochem Biotechnol 32:951–958

    Article  Google Scholar 

  8. van Can HJL, te Braake HAB, Bijman A, Helling C, Luyben KCh, Heijnen JJ (1999) An efficient model development strategy for bioprocess based on neural networks in macroscopic balances: part II. Biotechnol Bioeng 62:666–670

    Article  Google Scholar 

  9. Zorzeto LFM, Maciel Filho R, Wolf-Maciel MR (2000) Process modelling development through artificial neural networks and hybrid models. Comput Chem Eng 24:1355–1360

    Article  Google Scholar 

  10. Miller GL (1959) Use of dinitrosalisylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  11. Voleski B, Votubra J (1992). Modeling and optimization of fermentation processes. Elsevier, Amsterdam

    Google Scholar 

  12. Contois DE (1959) Kinetics of bacterial growth: relationship between population density and specific growth rate of continuous culture. J Gen Microbiol 21:40

    CAS  Google Scholar 

  13. Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3:371–394

    Article  CAS  Google Scholar 

  14. Teissier G (1942) Croissance des populations bacterie’nnes et quantite’d’ aliment disponible. Rev Sci Paris 3208:209

    Google Scholar 

  15. Moser A (1958) The dynamics of bacterial populations maintained in the chemostat. The Carnegie Institution, Washington

    Google Scholar 

  16. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn edn. McGraw-Hill, New York

    Google Scholar 

  17. Edwards VH (1970) The influence of high substrate concentration on microbial kinetics. Biotechnol Bioeng 12:679

    Article  CAS  Google Scholar 

  18. Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10:707

    Article  CAS  Google Scholar 

  19. Aiba S, Shoda M, Nagatani M (1968) Kinetic of product inhibition in alcohol fermentation. Biotechnol Bioeng 10:845

    Article  CAS  Google Scholar 

  20. Luong JHT (1986) Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnol Bioeng 29:242–248

    Article  Google Scholar 

  21. Gokulakrishnan S, Gummadi SN (2006) Kinetics of cell growth and caffeine utilization by Pseudomonas sp. GSC 1182. Process Biochem 41:1417–1421

    Article  CAS  Google Scholar 

  22. Tseng MC, Wayman M (1975) Kinetics of yeast growth, inhibition-threshold substrate concentrations. Can J Microbiol 21:994–1003

    Article  CAS  Google Scholar 

  23. Deuflhard E, Hairer E, Zugck J (1987) One step and extrapolation methods for differential-algebraic systems. Numer Math 51:501–516

    Article  Google Scholar 

  24. Kirkpatrick S, Gellat CD Jr, Vecchi MP (1983) Optimisation by simulated annealing. Science 220:671–680

    Article  Google Scholar 

  25. Zelic B, Vasic-Racki D, Wandrey C, Takors R (2004) Modeling of the piruvate production with Escherichia coli in fed-batch bioreactor. Bioprocess Biosyst Eng 26:249–258

    Article  CAS  Google Scholar 

  26. Bryjak J, Ciesielski K, Zbicinski I (2004) Modeling of glucoamylase thermal inactivation in the presence of starch by artificial neural network. J Biotechnol 114:177–185

    Article  CAS  Google Scholar 

  27. Faber R, Jockenhovel T, Tsatsaronis G (2005) Dynamic optimization with simulated annealing. Comput Chem Eng 29:273–290

    Article  CAS  Google Scholar 

  28. Valduga E, Treichel H, Valério A, Jacques R, Furigo Júnior A, Di Luccio M (2007) Pretreatment of sugarcane molasses and corn steep liquor for the production of carotenoids. Quim Nova 30:1860–1866

    CAS  Google Scholar 

  29. Aguiar W Jr, Faria LFF, Couto MAPG, Araujo OQF, Pereira N Jr (2002) Growth model and prediction of oxygen transfer rate for xylitol production from d-xylose by C guilliermondii. Biochem Eng J 12:49–59

    Article  CAS  Google Scholar 

  30. Kiviharju K, Salonen K, Leisola M, Eerikäinen T (2006) Modeling and simulation of Streptomyces peucetius var. caesius N47 cultivation and ε-rhodomycinone production with kinetic equations and neural networks. J Biotechnol 126:365–373

    Article  CAS  Google Scholar 

  31. Linko S, Zhu YH, Linko P (1999) Applying neural networks as software sensors for enzyme engineering. Trends Biotechnol 17:155–162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by CAPES, Brazilian Research Support Institute, URI—Campus de Erechim, and FEA/UNICAMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio A. Mazutti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazutti, M.A., Corazza, M.L., Filho, F.M. et al. Inulinase production in a batch bioreactor using agroindustrial residues as the substrate: experimental data and modeling. Bioprocess Biosyst Eng 32, 85–95 (2009). https://doi.org/10.1007/s00449-008-0225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0225-5

Keywords

Navigation