Skip to main content
Log in

Enhancing the thermal stability of lipases through mutagenesis and immobilization on zeolites

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The hydrolysis reaction of p-nitrophenyl butyrate catalyzed by lipases was followed with in situ UV/vis diode array spectrophotometry. Five enzymes - Candida antarctica lipase B and Fusarium solani pisi cutinase wild-type and three single-mutation variants - were tested as catalysts in homogeneous conditions and immobilized on zeolite NaY, on a polyacrylate support and as cross-linked aggregates. Using deconvolution techniques and kinetic modeling, the thermal stability of the different biocatalysts was compared in operational conditions and the results were supported by steady-state enzyme fluorescence measurements. We concluded that both the mutagenesis and the immobilization on zeolite NaY had a positive effect on the thermal stability of F. solani pisi cutinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gladilin AK, Levashov AV (1998) Enzyme stability in systems with organic solvents. Biochemistry (Mosc) 63:345–356

    CAS  Google Scholar 

  2. Gonçalves AM, Serro AP, Aires-Barros MR, Cabral JMS (2000) Effects of ionic surfactants used in reversed micelles on cutinase activity and stability. Biochim Biophys Acta 1480:92–106

    Google Scholar 

  3. Gonçalves AM, Aires-Barros MR, Cabral JMS (2003) Interaction of an anionic surfactant with a recombinant cutinase from Fusarium solani pisi: a spectroscopic study. Enzyme Microb Technol 32:868–879

    Google Scholar 

  4. Bessler C, Schmitt J, Maurer K-H, Schmid RD (2003) Directed evolution of a bacterial α-amylase: toward enhanced pH-performance and higher specific activity. Protein Sci 12:2141–2149

    Article  CAS  Google Scholar 

  5. Srimathi S, Jayaraman G, Narayanan PR (2006) Improved thermodynamic stability of subtilisin Carlsberg by covalent modification. Enzyme Microb Technol 39:301–307

    Article  CAS  Google Scholar 

  6. Hassani L, Ranjbar B, Khajeh K, Naderi-Manesh H, Naderi-Manesh M, Sadeghi M (2006) Horseradish peroxidase thermostabilization: the combinatorial effects of the surface modifications and the polyols. Enzyme Microb Technol 38:118–125

    Article  CAS  Google Scholar 

  7. Zhang N, Suen W-C, Windsor W, Xiao L, Madison V, Zaks A (2003) Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng 16:599–605

    Article  CAS  Google Scholar 

  8. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  Google Scholar 

  9. Yano JK, Poulos TL (2003) New understandings of thermostable and peizostable enzymes. Curr Opin Biotechnol 14:360–365

    Article  CAS  Google Scholar 

  10. Polizzi KM, Bommarius AS, Broering JM, Chaparro-Riggers JF (2007) Stability of biocatalysts. Curr Opin Chem Biol 11:220–225

    Article  CAS  Google Scholar 

  11. Guisán JM, Alvaro G, Fernandez-Lafuente R, Rosell CM, Garcia JM, Tagliani A (1993) Stabilization of heterodimeric enzyme by multipoint covalent immobilization: penicillin G acylase from Kluyvera citrophila. Biotechnol Bioeng 42:455–464

    Article  Google Scholar 

  12. Peterson ME, Daniel RM, Danson MJ, Eisenthal R (2007) The dependence of enzyme activity with temperature: determination and validation of parameters. Biochem J 402:331–337

    Article  CAS  Google Scholar 

  13. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  14. Eijsink VGH, Gåseidnes S, Borchert TV, van den Burg B (2005) Directed evolution of enzyme stability. Biomol Eng 22:21–30

    Article  CAS  Google Scholar 

  15. Palackal N, Brennan Y, Callen WN, Dupree P, Frey G, Goubet F, Hazlewood GP, Healey S, Kang YE, Kretz KA, Lee E, Tan X, Tomlinson GL, Verruto J, Wong VWK, Mathur EJ, Short JM, Robertson DE, Steer BA (2004) An evolutionary route to xylanase process fitness. Protein Sci 13:494–503

    Article  CAS  Google Scholar 

  16. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  17. Bornscheuer UT (2003) Immobilizing enzymes: how to create more suitable biocatalysts. Angew Chem Int Ed 42:3336–3337

    Article  CAS  Google Scholar 

  18. Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta 1543:223–238

    CAS  Google Scholar 

  19. Costa L, Brissos V, Lemos F, Ramôa Ribeiro F, Cabral JMS (2007) Comparing the effect of immobilization methods on the activity of lipase biocatalysts in ester hydrolysis. Bioprocess Biosyst Eng (in press). doi: 10.1007/s00449-007-0165-5

  20. Serralha FN, Lopes JM, Aires-Barros MR, Prazeres DMF, Cabral JMS, Lemos F, Ramôa Ribeiro F (2002) Stability of a recombinant cutinase immobilized on zeolites. Enzyme Microb Technol 31:29–34

    Article  CAS  Google Scholar 

  21. Brissos V (2006) In vitro evolution of lipolytic enzymes—stabilization of cutinase against surfactants. Ph.D. thesis, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon, Portugal

  22. Jayaraman G, Srimathi S, Bjarnason JB (2006) Conformation and stability of elastase from Atlantic cod, Gadus morhua. Biochim Biophys Acta 1760:47–54

    CAS  Google Scholar 

  23. Guo Q, Zhao F, Guo S-Y, Wang X (2004) The tryptophan residues of dimeric arginine kinase: roles of Trp-208 and Trp-218 in active site and conformation stability. Biochimie 86:379–386

    Article  CAS  Google Scholar 

  24. Baptista RP, Santos AM, Fedorov A, Martinho JMG, Pichot C, Elaïssari A, Cabral JMS, Taipa MA (2003) Activity, conformation and dynamics of cutinase adsorbed on poly(methyl methacrylate) latex particles. J Biotechnol 102:241–249

    Article  CAS  Google Scholar 

  25. Koutsopoulos S, Tjeerdsma A-M, Lieshout JFT, van der Oost J, Norde W (2005) In situ structure and activity studies of an enzyme adsorbed on spectroscopically undetectable particles. Biomacromolecules 6:1176–1184

    Article  CAS  Google Scholar 

  26. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer, New York

    Google Scholar 

  27. Neves-Petersen MT, Gryczynski Z, Lakowicz J, Fojan P, Pedersen S, Petersen E, Petersen SB (2002) High probability of disrupting a disulphide bridge mediated by an endogenous excited tryptophan residue. Protein Sci 11:588–600

    Article  CAS  Google Scholar 

  28. Martinho JMG, Santos AM, Fedorov A, Baptista RP, Taipa MA, Cabral JMS (2003) Fluorescence of the single tryptophan of cutinase: temperature and pH effect on protein conformation and dynamics. Photochem Photobiol 78:15–22

    Article  CAS  Google Scholar 

  29. Prompers JJ, Hilbers CW, Pepermans HAM (1999) Tryptophan mediated photoreduction of disulfide bond causes unusual fluorescence behaviour of Fusarium solani pisi cutinase. FEBS Lett 456:409–416

    Article  CAS  Google Scholar 

  30. Brissos V, Eggert T, Cabral JMS, Jaeger KE (2008) Improving activity and stability of cutinase towards the anionic detergent AOT by complete saturation mutagenesis. Protein Eng Des Sel (in press). doi:10.1093/protein/GZN014

  31. Lauwereys M, De Geus P, De Meutter J, Stanssens P, Mathyssens G (1990) Cloning, expression and characterization of cutinase, a fungal lipolytic enzyme. In: Alberghirna L, Schmidt RD, Verger R (eds) Lipases structure, mechanism and genetic engineering. GBF Monographs, vol 16, Braunschwerg

  32. Carvalho CML, Aires-Barros MR, Cabral JMS (1999) Cutinase: from molecular level to bioprocess development. Biotechnol Bioeng 66:17–34

    Article  CAS  Google Scholar 

  33. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  34. López-Serrano P, Cao L, van Rantwijk F, Sheldon RA (2002) Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnol Lett 24:1379–1383

    Article  Google Scholar 

  35. Knops-Gerrits P-P, de Vos DE, Feijen EJP, Jacobs PA (1997) Raman spectroscopy on zeolites. Microporous Mater 8:3–17

    Article  CAS  Google Scholar 

  36. Costa L, Brissos V, Lemos F, Ramôa Ribeiro F, Cabral JMS (2008) Following multi-component reactions in liquid medium using spectral deconvolution techniques. Appl Spectrosc (submitted)

  37. Srimathi S, Jayaraman G (2005) Effect of glycosylation on the catalytic and conformational stability of homologous α-amylases. Protein J 24:79–88

    Article  CAS  Google Scholar 

  38. Wilson L, Palomo JM, Fernández-Lorente G, Illanes A, Guisán JM, Fernández-Lafuente R (2006) Improvement of the functional properties of a thermostable lipase from Alcaligenes sp. via strong adsorption on hydrophobic supports. Enzyme Microb Technol 38:975–980

    Article  CAS  Google Scholar 

  39. Moreno J-M, Arroyo M, Hernáiz M-J, Sinisterra J-V (1997) Covalent immobilization of pure isoenzymes from lipase of Candida rugosa. Enzyme Microb Technol 21:552–558

    Article  CAS  Google Scholar 

  40. Arroyo M, Sánchez-Montero JM, Sinisterra J-V (1999) Thermal stabilization of immobilized lipase B from Candida antarctica on different supports: effect of water activity on enzymatic activity in organic media. Enzyme Microb Technol 24:3–12

    Article  CAS  Google Scholar 

  41. Aymard C, Belarbi A (2000) Kinetics of thermal deactivation of enzymes: a simple three parameters phenomenological model can describe the decay of enzyme activity, irrespectively of the mechanism. Enzyme Microb Technol 27:612–618

    Article  CAS  Google Scholar 

  42. Brissos V, Melo EP, Martinho JMG, Cabral JMS (2008) Biochemical and structural characterisation of cutinase mutants in the presence of the anionic surfactant AOT. Biochim Biophys Acta (submitted)

  43. Serralha FN, Lopes JM, Vieira Ferreira LF, Lemos F, Prazeres DMF, Aires-Barros MR, Cabral JMS, Ramôa Ribeiro F (2001) Conformational changes induced by immobilization of a recombinant cutinase on zeolites. Catal Lett 73:63–66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Novozymes A/S (Denmark) for the kind gifts of Novozym® 435 and Lipozyme® CaLB L. L. Costa and V. Brissos acknowledge Ph.D. grants (SFRH/BD/19108/2004 and SFRH/BD/9019/2002) from Fundação para a Ciência e Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Lemos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, L., Brissos, V., Lemos, F. et al. Enhancing the thermal stability of lipases through mutagenesis and immobilization on zeolites. Bioprocess Biosyst Eng 32, 53–61 (2009). https://doi.org/10.1007/s00449-008-0220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0220-x

Keywords

Navigation