Skip to main content
Log in

Novel bioreactors for the culture and expansion of aggregative neural stem cells

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Neural stem cells have been cultured as three-dimensional aggregates in a number of different types of bioreactors. The design and configuration of the bioreactor are shown to be crucial factors for the successful propagation of the cells. A novel bioreactor with liquid re-circulation and a working volume of 200 ml has been designed, tested and shown to be able to produce a higher cell vitality compared to those produced in multi-well plates, shake flasks and stirred flasks. The novel reactor was able to produce a total density of cells of 3.5 × 106 cells/ml consisting of a larger number of smaller and proliferative aggregates, compared to only 1.8 × 106 cells/ml produced in a multi-well plate. Shake flasks and stirred flasks commonly used for facilitating mass transfer in the culture of micro-organisms are shown to be unsuitable for the propagation of neural stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Svendsen CN, Caldwell MA, Shen J, ter Borg MG, Rosser AE, Tyers P, Karmiol S, Dunnett SB (1997) Exp Neurol 148:135–146

    Article  CAS  Google Scholar 

  2. Svendsen CN, ter Borg MG, Armstrong RJE, Rosser AE, Chandran S, Ostenfeld T, Caldwell MA (1998) J Neurosci Methods 85:141–152

    Article  CAS  Google Scholar 

  3. Svendsen CN, Smith AG (1999) New prospects for human stem-cell therapy in the nervous system. Trends Neurosci 22:357–364

    Article  CAS  Google Scholar 

  4. Zigova T, Sanberg PR (1998) Nat Biotechnol 16:1007–1008

    Article  CAS  Google Scholar 

  5. Weiss S (1999) Nat Biotechnol 17(9):850–851

    Article  CAS  Google Scholar 

  6. Ostenfeld T, Caldwell MA, Prowse KR, Linskens MH, Jauniaux E, Svendsen CN (2000) Exp Neurol 164:215–226

    Article  CAS  Google Scholar 

  7. Caldwell MA, He X, Wilkie N, Pollack S, Marshall G, Wafford KA, Svendsen CN (2001) Nat Biotechnol 19(5):475–479

    Article  CAS  Google Scholar 

  8. Reubinoff BE, Itsykson P, Turetsky T, Pera MF, Reinhartz E, Itzik A, Ben-Hur T (2001) Nat Biotechnol 19(12):1134–1140

    Article  CAS  Google Scholar 

  9. Sen A, Kallos MS, Behie LA (2001) Ind Eng Chem Res 40:5350–5357

    Article  CAS  Google Scholar 

  10. Prestoz L, Relvas JB, Hopkins K, Patel S, Sowinski P, Price J, ffrench-Constant C (2001) Mol Cell Neurosci 18:473–484

    Article  CAS  Google Scholar 

  11. Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY (2002) Nat Biotechnol 20:1103–1110

    Article  CAS  Google Scholar 

  12. Goldman S (2005) Nat Biotechnol 23(7):862–871

    Article  CAS  Google Scholar 

  13. Sen A, Behie LA (1999) Can J Chem Eng 77:963–972

    Article  CAS  Google Scholar 

  14. Sen A, Kallos MS, Behie LA (2002) Biotechnol Prog 18:337–345

    Article  CAS  Google Scholar 

  15. Kallos MS, Sen A, Behie LA (2003) Med Biol Eng Comput 41:271–282

    Article  CAS  Google Scholar 

  16. Schwartz PH, Bryant PJ, Fuja TJ, Su H, O’Dowd DK, Klassen H (2003) J Neurosci Res 74:838–851

    Article  CAS  Google Scholar 

  17. Kallos MS, Vescovi AL, Behie LA (1999) Biotechnol Bioeng 65(5):589–599

    Article  CAS  Google Scholar 

  18. Yao CL, Liu CH, Chu IM, Hsieh TB, Hwang SM (2003) Enzyme Microb Technol 33:343–352

    Article  CAS  Google Scholar 

  19. Pettengell R, Moore MAS (1998) In: Quesenberry PJ, Stein GS, Forget BG, Weissman SM (eds) Stem cell biology and gene therapy. Wiley, New York, pp 133–159

    Chapter  Google Scholar 

  20. Cabrita GJM, Ferreira BS, da Silva CL, Goncalves R, Almeida-Porada G, Cabral JMS (2003) Trends Biotechnol 21(5):233–240

    Article  CAS  Google Scholar 

  21. Weber M, Steinert A, Jork A, Dimmler A, Thürmer F, Schütze N, Hendrich C, Zimmermann U (2002) Biomaterials 23:2003–2013

    Article  CAS  Google Scholar 

  22. Konno T, Akita K, Kurita K, Ito Y (2005) J Biosci Bioeng 100(1):88–93

    Article  CAS  Google Scholar 

  23. Birch JR, Lambert K, Thompson PW, Kenney AC, Wood LA (1987) In: Lydersen BK (ed) Large scale cell culture technology. Hanser Publishers, New York, pp 1–20

  24. Griffiths JB (1990) In: Pollard JW, Walker JM (eds) Animal cell culture, methods in molecular biology, vol 5. Humana Press, Clifton, pp 49–63

    Chapter  Google Scholar 

  25. Vriezen N, van Dijken JP, Häggström L (2001) In: Ratledge C, Kristiansen B (eds) Basic biotechnology, 2nd edn. Cambridge University Press, Cambridge, pp 449–470

    Google Scholar 

Download references

Acknowledgement

The neural stem cell cultures are gifts from Dr. M. A. Caldwell of the Cambridge Centre for Brain Repair and Professor C. ffrench-Constant of the Department of Pathology. Y. L. Ng is thankful for the financial support from the Cambridge Commonwealth Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard A. Chase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, Y.L., Chase, H.A. Novel bioreactors for the culture and expansion of aggregative neural stem cells. Bioprocess Biosyst Eng 31, 393–400 (2008). https://doi.org/10.1007/s00449-007-0174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-007-0174-4

Keywords

Navigation