Skip to main content
Log in

Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Rhizopus microsporus var. rhizopodiformis produced high levels of α-amylase and glucoamylase under solid state fermentation, with several agricultural residues, such as wheat bran, cassava flour, sugar cane bagasse, rice straw, corncob and crushed corncob as carbon sources. These materials were humidified with distilled water, tap water, or saline solutions—Segato Rizzatti (SR), Khanna or Vogel. The best substrate for amylase production was wheat bran with SR saline solution (1:2 v/v). Amylolytic activity was still improved (14.3%) with a mixture of wheat bran, corncob, starch and SR saline solution (1:1:0.3:4.6 w/w/w/v). The optimized culture conditions were initial pH 5, at 45 °C during 6 days and relative humidity around 76%. The crude extract exhibited temperature and pH optima around 65 °C and 4–5, respectively. Amylase activity was fully stable for 1 h at temperatures up to 75 °C, and at pH values between 2.5 and 7.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2004) Microbial α-amylases: a biotecnological perspective. Process Biochem 38:1599–1616

    Article  Google Scholar 

  2. Crabb WD, Mitchinson C (1997) Enzymes involved in the processing of starch to sugars. Trends Biotechnol 15:349–352

    Article  CAS  Google Scholar 

  3. Chen J, Li D, Zhang Y, Zhou Q (2005) Purification and characterization of thermostable glucoamylase from Chaetomium thermophilum. J Gen Appl Microbiol 175–181

  4. Aquino ACMM, Jorge JA, Terenzi HF, Polizeli MLTM (2003) Studies on a thermostable α-amylase from the thermophilic fungus Scytalidium thermophilum. Appl Microbiol Biotechnol 61(4):323–328

    CAS  Google Scholar 

  5. Cereia M, Terenzi HF, Jorge JA, Greene LJ, Rosa JC, Polizeli MLTM (2000) Glucoamylase activity from the thermophilic fungus Scytalidium thermophilum. Biochemical and regulatory properties. J Basic Microbiol 40(2):65–74

    Article  Google Scholar 

  6. Kunamneni A, Permaul K, Singh S (2005) Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng 100(2):168–171

    Article  CAS  Google Scholar 

  7. Khrishna C (2005) Solid-state fermentation systems-an overview. Crit Rev Biotechnol 25(1–2):1–30

    Article  Google Scholar 

  8. Bellon-Maurel V, Orliac O, Christen P (2003) Sensors and measurements in solid state fermentation: a review. Process Biochem 38:881–896

    Article  CAS  Google Scholar 

  9. Rahardjo YSP, Sie S, Weber FJ, Tramper J, Rinzema A (2005) Effect of low oxygen concentrations on growth α-amylase production of Aspergillus oryzae in model solid-state fermentation systems. Biomol Eng 21:163–172

    CAS  Google Scholar 

  10. Han J (2002) Solid-state fermentation of cornmeal with the basidiomicete Hericium erinaceum for degrading starch and upgrading nutritional value. Int J Food Microbiol 80:61–66

    Article  Google Scholar 

  11. Sandrim VC, Rizzatti ACS, Terenzi HF, Jorge JA, Milagres AMF, Polizeli MLTM (2005) Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential of kraft pulp bleaching. Process Biochem 40(5):1823–1828

    Article  CAS  Google Scholar 

  12. Ray RC (2004) Extracellular amylase(s) production by fungi Botryodiplodia theobromae and Rhizopus oryzae grown on cassava starch residue. J Environ Biol 25(4):489–495

    CAS  Google Scholar 

  13. Schipper MAA, Stalpers JAA (1984) Revision of the genus Rhizopus. Stud Mycol 25:20–34

    Google Scholar 

  14. Peixoto SC, Jorge JA, Terenzi HF, Polizeli MLTM (2003) Rhizopus microsporus var. rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylases. Int Microbiol 6:269–273

    Article  CAS  Google Scholar 

  15. Haidle CW, Strock R (1966) Localization of trehalose in the ascospores of Neurospora: Reaction to ascospores dormancy and germination. J Bacteriol 115:592–599

    Google Scholar 

  16. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  17. Bergmeyer HU, Bernt E (1974) Methods of enzymatic analysis—a textbook 1st edn. Worth Publishers, New York

    Google Scholar 

  18. Fuwa H (1954) A new method for microdetermination of amylase activity by the use of amylose as the substrate. J Biochem 41(5):583–603

    CAS  Google Scholar 

  19. Hagihara B, Matsubara H, Nakai M, Okunuki K (1958) Crystalline bacterial proteinase. J Biochem 45:185–194

    CAS  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  21. Khanna P, Sundari SS, Kumar NJ (1995) Production, isolation and partial purification of xylanase from Aspergillus sp. World J Microbiol Biotechnol 11:242–243

    Article  CAS  Google Scholar 

  22. Vogel HF (1964) Distribution of lysine pathways among fungi: evolutionary implications. Am Nat 98:435–446

    Article  CAS  Google Scholar 

  23. Rizzatti ACS, Jorge JA, Terenzi HF, Rechia CGV, Polizeli MLTM (2001) Purification and properties of a thermostable extracellular β-d-xylosidase produced by a thermotolerant Aspergillus phoenicis. J Ind Microbiol Biotechnol 26(3):156–160

    Article  CAS  Google Scholar 

  24. Soccol CR, Marin B, Raimbault M, Lebault JM (1994) Breeding and growth of Rhizopus in cassava by solid state fermentation. Appl Microbiol Biotechnol 41:330–336

    Article  CAS  Google Scholar 

  25. Sparringa RA, Kendall M, Westby A, Owens JD (2002) Effects of temperature, pH water activity and CO2 concentration on growth of Rhizopus oligosporus NRRL 2710. J Appl Microbiol 92:329–337

    Article  CAS  Google Scholar 

  26. Wanderley KJ, Torres FAG, Moraes LMP, Ulhoa CJ (2004) Biochemical characterization of α-amylase from the yeast Cryptococcus flavus. Microbiol Lett 231:165–169

    Article  CAS  Google Scholar 

  27. Ellaiah P, Adrnarayana K, Bhavani Y, Padmaja P, Srinivasulu B (2002) Optimization of process parameters for glucoamylase production under solid state fermentation by newly isolated Aspergillus species. Process Biochem 38:615–620

    Article  CAS  Google Scholar 

  28. Shigechi H, Uyama K, Fujita Y, Matsumoto T, Ueda M, Tanaka A, Fukuda H, Kondo A (2002) Efficient ethanol production from starch through development of novel flocculent yeast strains displaying glucoamylase and co-displaying or secreting α-amylase. J Molec Catal 17:179–187

    Article  CAS  Google Scholar 

  29. Kozlowski R, Batog J, Konczewicz W, Mackiewicz-Talarczyk M, Muzyczek M, Sedelnick N, Tanska B (2006) Enzymes in bast fibrous plant processing. Biotechnol Lett 28(10):761–765

    Article  CAS  Google Scholar 

  30. Bhaskar N, Benila T, Radha C, Lalitha RG (2007) Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour Technol 98(14):2758–2764

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho de Desenvolvimento Científico e Tecnológico (CNPq). H.F.T.; J.A.J.; M.L.T.M.P. are Research Fellows of CNPq. S.C.P.N. was Master recipient CAPES and this work is part of her Master Dissertation. We thank Ricardo F. Alarcon and Maurício de Oliveira for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. T. M. Polizeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peixoto-Nogueira, S.C., Sandrim, V.C., Guimarães, L.H.S. et al. Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source. Bioprocess Biosyst Eng 31, 329–334 (2008). https://doi.org/10.1007/s00449-007-0166-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-007-0166-4

Keywords

Navigation