Skip to main content
Log in

Design of transcriptional fusions of stress sensitive promoters and GFP to monitor the overburden of Escherichia coli hosts during recombinant protein production

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Due to the lack of appropriate sensors for monitoring changes of Escherichia coli cells and the huge complexity of cellular systems, many of the present protein production processes are still far from optimal. Aiming at maximal exploitation of the host cell, enhanced knowledge of cellular reactions related to recombinant protein expression is required. Current methods like DNA microarrays and 2-D-electrophoresis enable the acquisition of transcriptional and translational activity shifts in stress situations like heat shock, general stress response, nutrient limitation, and stress caused by overexpression of heterologous proteins. However, these techniques and data processing are time consuming, therefore, the goal is to create new on-line systems such as stress promoter GFP fusions to monitor metabolic alterations. The fluorescence signal of expressed GFP can be measured by 2-D-multi-wavelength fluorescence spectroscopy, thereby allowing non-invasive on-line in vivo monitoring. Results of efficient stress monitoring approaches in ongoing protein production process are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Demain AL (2000) Microbial biotechnology. Trends Biotechnol 18(1):26–31

    Article  CAS  Google Scholar 

  2. Blattner FR, Pukett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1474

    Article  CAS  Google Scholar 

  3. Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS (1990) Plasmid encoded protein: the principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng 35:668–681

    Article  CAS  Google Scholar 

  4. Wick LM, Egli T (2004) Molecular components of physiological stress responses in Escherichia coli. Adv Biochem Eng Biochnol 89:1–45

    CAS  Google Scholar 

  5. Cashel M, Rudd KE (1987) The stringent response. In: Neidhardt FC, Ingraham JL, Broosk Low K, Magasanik B, Schächter M, Umbarger H (eds) Escherichia coli and Salmonella typhimurim: cellular and molecular biology. American Society of Microbiology, Washington DC pp 1410–1438

    Google Scholar 

  6. Hoffmann F, Rinas U (2004) Stress induced by recombinant protein production in Escherichia coli. Adv Biochem Eng Biotechnol 89:73–92

    CAS  Google Scholar 

  7. Marose S, Lindemann C, Scheper T (1998) Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring. Biotechnol Prog 14(1):63–74

    Article  CAS  Google Scholar 

  8. Clementschitsch F, Kern J, Pötschacher F, Bayer K (2005) Sensor combination and chemometric modelling for improved process monitoring in recombinant E. coli fed-batch cultivations. J Biotechnol 120:183–196

    Article  CAS  Google Scholar 

  9. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as marker for gene expression. Science 263(5148):802–805

    Article  CAS  Google Scholar 

  10. Cha HJ, Srivastava R, Vakhaira VN, Rao G, BentleyWE (1999) Green fluorescent protein as a non invasive probe in resting Escherichia coli cells. Appl Environ Microbiol. 65(2):409–414

    CAS  Google Scholar 

  11. Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of green fluorescent protein (GFP). Gene 173(1):33–38

    Article  CAS  Google Scholar 

  12. Reischer H, Schotola I, Striedner G, Pötschacher F, Bayer K (2004) Evaluation of the GFP signal and its aptitude for novel on-line monitoring strategies of recombinant fermentation processes. J Biotechnol 108:115–125

    Article  CAS  Google Scholar 

  13. Chang DE, Smalley DJ, Conway T (2002) Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol Microbiol 45(2):289–306

    Article  CAS  Google Scholar 

  14. Yoon SH, Han MJ, Lee SY, Jeong KJ, Yoo JS (2003) Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng 81(7):753–767

    Article  CAS  Google Scholar 

  15. Haddadin FT, Harcum SW (2005) Transcriptome profiles for high-cell-density recombinant and wild-type Escherichia coli. Biotechnol Bioeng 90(2):127–153

    Article  CAS  Google Scholar 

  16. Vostiar I, Tkac J, Mandenius CF (2004) Off-line monitoring of bacterial stress response during recombinant protein production using optical biosensors. J Biotechnol 111:191–201

    Article  CAS  Google Scholar 

  17. Petersson L, Carrio MM, Vera A, Villaverde A (2004) The impact of dnaKJ overexpression on recombinant protein solubility results from antagonistic effects on the control of protein quality. Biotechnol Lett 26(7):595–601

    Article  CAS  Google Scholar 

  18. Fürste JP, Pansegrau W, Frank R, Blöcker H, Scholz P, Bagdasarian M, Lanka E (1986) Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48(1):119–131

    Article  Google Scholar 

  19. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 97(12):6640–6645

    Article  CAS  Google Scholar 

  20. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Habor Laboratory Press, ISBN:0879695765

  21. Studier FW (1991) Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Bio 219(1):37–44

    Article  CAS  Google Scholar 

  22. Moffatt BA, Studier FW. (1988) Entry of bacteriophage T7 DNA into the cell and escape from host restriction. J Bacteriol 170(5):2095–2105

    CAS  Google Scholar 

  23. DeBoy RT, Craig NL (2000) Target site selection by Tn7: attTn7 transcription and target activity. J Bacteriol 182(11):3310–3313

    Article  CAS  Google Scholar 

  24. Phillips GJ (1998) New cloning vectors with temperature-sensitive replication. Plasmid 41(1):78–81

    Article  Google Scholar 

  25. Porstmann T, Wietschke R, Grunow R, Jahn S, Porstmann B, Schmechta H, Pergande M, Von Baehr R (1990) Production and characterization of monoclonal antibodies against human Cu/Zn superoxide dismutase and the establishment of a super-rapid enzyme-linked immunosorbent assay (SURALISA). J Immunol Methods 127(1):1–10

    Article  CAS  Google Scholar 

  26. Cserjan-Puschmann M, Kramer W, Duerrschmid E, Striedner G, Bayer K (1999) Metabolic approaches for the optimisation of recombinant fermentation processes. PNAS 53(1):43–50

    CAS  Google Scholar 

  27. Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13(2):247–261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Austrian Center of Biopharmaceutical Technology (ACBT, http://www.acbt.at). We acknowledge this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Bayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemecek, S., Marisch, K., Juric, R. et al. Design of transcriptional fusions of stress sensitive promoters and GFP to monitor the overburden of Escherichia coli hosts during recombinant protein production. Bioprocess Biosyst Eng 31, 47–53 (2008). https://doi.org/10.1007/s00449-007-0143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-007-0143-y

Keywords

Navigation