Skip to main content
Log in

Effects of the internal recycling rate on biological nutrient removal and microbial community structure in a sequential anoxic/anaerobic membrane bioreactor

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study investigated the effects of the internal recycling rate on nutrients removal in a sequential anoxic/anaerobic membrane bioreactor (SAM). Microbial community structure in sludge from the SAM was studied using quinone profile method. Above 98% COD, 68% nitrogen, and 55% phosphorus removal efficiencies were achieved when the internal recycling rate was 2.5 times influent flow. At that rate, the optimum specific nitrate loading rate and COD/NO3-N ratio were found to be 2.24 mgNO3-N g−1 MLSS h−1 and 9.13, respectively. Batch tests demonstrated that anoxic condition suppressed phosphorus release, and that denitrification was also influenced by initial substrate concentration. Denitrification appeared to have some priority over phosphorus release for substrate uptake. Microbial community analysis revealed a predominance of the subclass β-Proteobacteria. Furthermore, it was found that Rhodocyclus-related bacteria were efficient at phosphorus removal than Actinobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahn K-H, Song K-G, Choa E, Cho J, Yun H, Lee S, Me J (2003) Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor (SAM) process. Desalination 157(1–3):345–352

    Article  CAS  Google Scholar 

  2. Cho J, Song K-G, Lee SH, Ahn K-H (2005) Sequencing anoxic/anaerobic membrane bioreactor (SAM) pilot plant for advanced wastewater treatment. Desalination 178(1–3):219–225

    Article  CAS  Google Scholar 

  3. Zhang B, Yamamoto K, Ohgaki S, Kamiko N (1997) Floc size distribution and bacterial activities in membrane separation activated sludge processes for small-scale wastewater treatment/reclamation. Wat Sci Technol 35(6):37–44

    Article  CAS  Google Scholar 

  4. Fan X-J, Urbain V, Qian Y, Manem J (1996) Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment. Wat Sci Technol 34(1–2):129–136

    Article  CAS  Google Scholar 

  5. Hofken MWA, Huber P, Schafer M, Steiner R (1996) Membrane aerators and stirring systems for the operation in large and small wastewater treatment plants. Wat Sci Technol 34(3–4):329–338

    Article  Google Scholar 

  6. de Silva DGV, Urbain V, Abeysinghe DH, Rittmann BE (1998) Advanced analysis of membrane-bioreactor performance with aerobic-anoxic cycling. Wat Sci Technol 38(4–5):505–512

    Google Scholar 

  7. Louie TM, Mah TJ, Oldham W, Ramey WD (2000) Use of metabolic inhibitors and gas chromatography/mass spectrometry to study poly-[beta]-hydroxyalkanoates metabolism involving cryptic nutrients in enhanced biological phosphorus removal systems. Wat Res 34(5):1507–1514

    Article  CAS  Google Scholar 

  8. Shin J-H, Lee S-M, Jung J-Y, Chung Y-C, Noh S-H (2005) Enhanced COD and nitrogen removals for the treatment of swine wastewater by combining submerged membrane bioreactor (MBR) and anaerobic upflow bed filter (AUBF) reactor. Process Biochem 40(12):3769–3776

    Article  CAS  Google Scholar 

  9. Hu H-Y, Fujie K, Nakagome H, Urano K, Katayama A (1999) Quantitative analyses of the change in microbial diversity in a bioreactor for wastewater treatment based on respiratory quinones. Wat Res 33(15):3263–3270

    Article  CAS  Google Scholar 

  10. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59(1):143–169

    CAS  Google Scholar 

  11. Wagner M, Amann R, Lemmer H, Schleifer KH (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59(5):1520–1525

    CAS  Google Scholar 

  12. Fang J, Barcelona MJ (1998) Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry. J Microbiol Methods 33(1):23–35

    Article  CAS  Google Scholar 

  13. Macnaughton SJ, Jenkins TL, Wimpee MH, Cormier MR, White DC (1997) Rapid extraction of lipid biomarkers from pure culture and environmental samples using pressurized accelerated hot solvent extraction. J Microbiol Methods 31(1–2):19–27

    Article  CAS  Google Scholar 

  14. Hu H-Y, Lim B-R, Goto N, Fujie K (2001) Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47(1):17–24

    Article  CAS  Google Scholar 

  15. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42(6):457–469

    CAS  Google Scholar 

  16. Hiraishi A, Ueda Y, Ishihara J (1998) Quinone Profiling of Bacterial Communities in Natural and Synthetic Sewage Activated Sludge for Enhanced Phosphate Removal. Appl Environ Microbiol 64(3):992–998

    CAS  Google Scholar 

  17. Hiraishi A (1999) Isoprenoid quinones as biomarkers of microbial populations in the environment. J Biosci Bioeng 88(5):449–460

    Article  CAS  Google Scholar 

  18. Lim B-R, Ahn K-H (2004) Analysis of microbial community structure in a biofilm on membrane surface in the submerged membrane bioreactor treating domestic wastewater on the basis of respiratory quinone profiles. J Gen Appl Microbiol 50(4):197–202

    Article  CAS  Google Scholar 

  19. Hedrick DB, White DC (1986) Microbial respiratory quinones in the environment : I. A sensitive liquid chromatographic method. J Microbiol Methods 5(5–6):243–254

    Article  CAS  Google Scholar 

  20. Lim B-R, Ahn K-H, Songprasert P, Lee S-H, Kim M-J (2004) Microbial community structure in an intermittently aerated submerged membrane bioreactor treating domestic wastewater. Desalination 161(2):145–153

    Article  CAS  Google Scholar 

  21. Merkel W, Manz W, Szewzyk U, Krauth K (1999) Population dynamics in anaerobic wastewater reactors: modelling and in situ characterization. Wat Res 33(10):2392–2402

    Article  CAS  Google Scholar 

  22. APHA (1992) Standard methods for the examination of water and wastewater, 18th edn. APHA-AWWA-WEF

  23. Kuba T, Smolders G, van Loosdrecht MCM, Heijnen JJ (1993) Biological phosphorus removal from wastewater by anaerobic-anoxic batch reactors. Wat Sci Technol 27:241–252

    CAS  Google Scholar 

  24. Hascoet MC, Florentz M (1985) Influence of nitrate on biological phosphorus removal from wastewater. Water SA 11(1):1–8

    CAS  Google Scholar 

  25. Gerber A, Mostert ES, Winter CT, Villiers RH (1987) Interaction between phosphate, nitrate and organic substrate in biological nutrient removal processes. Wat Sci Technol 19:183–194

    CAS  Google Scholar 

  26. Chuang S-H, Ouyang C-F, Wang Y-B (1996) Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition. Wat Res 30(12):2961–2968

    Article  CAS  Google Scholar 

  27. Orhan D, Artan N (1994) Modelling of activated sludge systems. Technomic Publication Company Inc 61–69:482–492

    Google Scholar 

  28. Li H, Yang M, Zhang Y, Yu T, Kamagata Y (2006) Nitrification performance and microbial community dynamics in a submerged membrane bioreactor with complete sludge retention. J Biotech 123(1):60–70

    Article  CAS  Google Scholar 

  29. Zilles JL, Peccia J, Kim M-W, Hung C-H, Noguera DR (2002) Involvement of rhodocyclus-related organisms in phosphorus removal in full-scale wastewater treatment plants. Appl Environ Microbiol 68(6):2763–2769

    Article  CAS  Google Scholar 

  30. Kurisu F, Satoh H, Mino T, Matsuo T (2002) Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone profile method. Wat Res 36(2):429–438

    Article  CAS  Google Scholar 

  31. Tang J-C, Kanamori T, Inoue Y, Yasuta T, Yoshida S, Katayama A (2004) Changes in the microbial community structure during thermophilic composting of manure as detected by the quinone profile method. Process Biochem 39(12):1999–2006

    Article  CAS  Google Scholar 

  32. Hanada S, Liu WT, Shintani T, Kamagata Y, Nakamura K (2002) Tetrasphaera elongata sp. nov., a polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 52(3):883–887

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zubair Ahmed or Kyu-Hong Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, Z., Lim, BR., Cho, J. et al. Effects of the internal recycling rate on biological nutrient removal and microbial community structure in a sequential anoxic/anaerobic membrane bioreactor. Bioprocess Biosyst Eng 30, 61–69 (2007). https://doi.org/10.1007/s00449-006-0098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0098-4

Keywords

Navigation