Skip to main content

Advertisement

Log in

Kinetics of nitrogen removal from sanitary landfill leachate

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Leachates from municipal landfill ‘Lublinek‘ in Lodz city (Poland) were treated in two-sludge sequence batch reactor systems (type ND). The external carbon source—sodium acetate was used in denitrification. Two versions were tested—with and without supernatant recirculation from D-SBR to N-SBR. The 99% removal of inorganic nitrogen compounds was achieved in both versions. Due to recirculation, the buffering (by means of sodium bicarbonate) was not necessary. Kinetic models for nitrification and denitrification processes were proposed. Kinetic parameters of the models were estimated by the optimization method. The experimental results of both nitrification steps (oxidation of ammonia to nitrites and nitrites to nitrates) were best fitted with the interactive limitation model of nitrogen compounds and oxygen. The denitrification process was limited only by the concentration of nitrogen compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AC:

Activated sludge

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

CSTR:

Continuous stirred tank reactor

DF:

Down flow

D-SBR:

Denitrification sequence batch reactor

MLVSS:

Mixed liquor volatile suspended solids

N-SBR:

Nitrification sequence batch reactor

RBC:

Rotating bed contactor

SBR:

Sequence batch reactor

UASB:

Upflow anaerobic sludge blanket

UF:

Up flow

c :

concentration (mg dm−3)

c*:

equilibrium concentration (mg dm−3)

K I :

inhibition coefficient (mg dm−3)

k L a :

oxygen volumetric mass transfer coefficient in the liquid phase (h−1)

K S :

saturation coefficient (mg dm−3)

r :

substrate utilization rate (mg N dm−3 day−1)

X :

biomass concentration (gMLVSS dm−3)

Y :

yield coefficient (–)

ν:

substrate utilization rate (mg gMLVSS−1 dm−3 day−1)

νmax :

maximum substrate utilization rate (mg gMLVSS−1 dm−3 day−1)

0:

initial value

A:

autotrophic biomass

H:

heterotrophic biomass

MLVSS:

mixed liquor volatile suspended solids

NH3/NO2 :

ammonia inhibition to nitrites utilization

N-NH:

the sum of ammonia and ammonium ion

N-NH3 :

ammonia

N-NH +4 :

ammonium ion

N-HNO2 :

nitrous acid

N-NO2 :

the sum of nitrites and nitrous acid

N-NO 2 :

nitrite

N-NO 3 :

nitrate

O2 :

oxygen

References

  1. Dichtl N, Kayser R, Steensen M (1997) Weitergehende Reinigung von Deponiesickerwässern durch chemische Oxidation/UV-Bestrahlung mit biologischer Vor- und Nachbehandlung. Abschlussbericht, TU Braunschweig

  2. Burton SAQ, Watson-Craik IA (1998) Ammonia and nitrogen fluxes in landfill sites: applicability to sustainable landfilling. Waste Manage Res 16:41–53

    CAS  Google Scholar 

  3. Kjeldsen P, Christensen TH (2001) A simple model for the distribution and fate of organic chemicals in a landfill: MOCLA. Waste Manage Res 19:201–216

    Article  CAS  Google Scholar 

  4. Wiesmann U (1994) Biological nitrogen removal from wastewater. Adv Biochem Eng/Biotechnol 51:113–154

    CAS  Google Scholar 

  5. Zart D, Stüven R, Bock E (1999) Nitrification and denitrification—microbial fundamentals and consequences for application. Biotechnology, vol 11. Weinheim, NY, USA, pp 56–65

  6. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    CAS  Google Scholar 

  7. Whittaker M, Bergmann D, Arciero D, Hooper AB (2000) Electron transfer during the oxidation of ammonia by the chemolitotrophic bacterium Nitrosomonas europaea. Biochim Biophys Acta 1459:346–355

    Article  CAS  Google Scholar 

  8. Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13(1):218–227

    Article  CAS  Google Scholar 

  9. Wett B, Rauch W (2003) The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater. Water Res 37:1100–1110

    Article  CAS  Google Scholar 

  10. Robinson KG, Dionisi HM, Harms G, Layton AC, Gregory IR, Sayler GS (2003) Molecular assessment of ammonia- and nitrite-oxidizing bacteria in full-scale activated sludge wastewater treatment plants. Water Sci Technol 48(8):103–110

    Google Scholar 

  11. Islas-Lima S, Thalasso F, Gomez-Hernandez J (2004) Evidence of anoxic methane oxidation coupled to denitrification. Water Res 38:13–16

    Article  CAS  Google Scholar 

  12. Gujer W, Henze M, Mino T, van Loosdrecht M (1999) Activated sludge model no. 3. Water Sci Technol 39(1):183–193

    Google Scholar 

  13. Chang HN, Moon RK, Park BG, Lim S-J, Choi DW, Lee WG, Song SL, Ahn YH (2000) Simulation of sequential batch reactor (SBR) operation for simultaneous removal of nitrogen and phosphorus. Bioprocess Eng 23:513–521

    Article  CAS  Google Scholar 

  14. Coelho MAZ, Russo C, Araujo OQF (2000) Optimization of a sequencing batch reactor for biological nitrogen removal. Water Res 34(10):2809–2817

    Article  CAS  Google Scholar 

  15. Moussa MS, Hooijmans CM, Lubberding HJ, Gijzen HJ, van Loosdrecht MCM (2005) Modelling nitrification, heterotrophic growth and predation in activated sludge. Water Res 39(20):5080–5098

    Article  CAS  Google Scholar 

  16. Surmacz-Górska J (2000) Usuwanie zanieczyszczeń organicznych oraz azotu z odcieków powstających w wysypiskach odpadów komunalnych (Removal of organics and nitrogen from landfill leachate). Inżynieria Środowiska, 44, Zeszyty Naukowe Politechniki Śląskiej

  17. Pelkonen M, Kotro M, Rintala J (1999) Biological nitrogen removal from landfill leachate a pilot-scale study. Waste Manage Res 17:493–497

    Article  CAS  Google Scholar 

  18. Hoilijoki TH, Kettunen RH, Rintala JA (2000) Nitrification of anaerobically pretreated municipal landfill leachate at low temperature. Water Res 34(5):1435–1446

    Article  CAS  Google Scholar 

  19. Ilies P, Mavinic DS (2001) The effect of decreased ambient temperature on the biological nitrification and denitrification of a high ammonia landfill leachate. Water Res 35(8):2065–2072

    Article  CAS  Google Scholar 

  20. Im J-H, Woo H-J, Choi M-W, Han K-B, Kim C-W (2001) Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic–aerobic system. Water Res 35(10):2403–2410

    Article  CAS  Google Scholar 

  21. Martienssen M, Schöps R (1997) Biological treatment of leachate from solid waste landfill sites—alternations in the bacterial community during the denitrification process. Water Res 31(5):1164–1170

    Article  CAS  Google Scholar 

  22. Jokela JPY, Kettunen RH, Sormunen KM, Rintala JA (2002) Biological nitrogen removal from municipal landfill leachate: low-cost nitrification in biofilters and laboratory scale in-situ denitrification. Water Res 36:4079–4087

    Article  CAS  Google Scholar 

  23. Stephenson T, Pollard SJT, Cartmell E (2003) Feasability of biological aerated filters (BAFs) for leachate treatment. In: Proceedings Sardinia 2003, ninth international waste management and landfill symposium

  24. Henderson JP, Besler DA, Atwater JA, Mavinic DS (1997) Treatment of methanogenic lanfill leachate to remove ammonia using a rotating biological contactor (RBC) and a sequencing batch reactor (SBR). Environ Technol 18:687–698

    Article  CAS  Google Scholar 

  25. Welander U, Henrysson T, Welander T (1998) Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Res 32(5):1564–1570

    Article  CAS  Google Scholar 

  26. Schwarzenbeck N, Leonhard K, Wilderer PA (2003) Treatment of landfill leachate—high tech or low tech? A case study. Water Sci Technol 48(11–12):277–284

    CAS  Google Scholar 

  27. Luning L, Notenboom G (1997) The membrane bioreactor, advanced leachate treatment. In: Christensen TH, Cossu R, Stegmann R (eds) Proceedings of the sixth international landfill symposium. CISA, Cagliari, Italy, pp 275–281

  28. Yalmaz G, Öztürk I (2001) Biological ammonia removal from anaerobically pre-treated landfill leachate in sequencing batch reactors (SBR). Water Sci Technol 43:307–314

    CAS  Google Scholar 

  29. Dockhorn T, Chang L, Dichtl N (1997) Removal of nitrogen from landfill leachate by using SBR-technology. In: Christensen TH, Cossu R, Stegmann R, (eds) Proceedings of the sixth international landfill symposium. CISA, Cagliari, Italy, pp 303–314

  30. APHA (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association (APHA), Washington, DC

  31. Noophan P, Figureoa LA, Munakata-Marr J (2004) Nitrite oxidation inhibition by hydroxyloamine: experimental and model evaluation. Water Sci Technol 50(6):295–304

    CAS  Google Scholar 

  32. Maurer C, Steegmans R, Kraus S (1996) Reststoffarme Deponiesickerwasseraufbereitung nach dem Verfahren Biologie-Regenerative Aktivkohle-Ozon/UV-Biologie-Ionensustauscher (BAOUBI) fuer die Deponien Fernthal und Linkenbach in Landkreis Neuwied, RWTH Aachen

  33. Gromadecki F, Chang L (1995) Stickstoffelimination mit Einstufigen Belebungsanlagen zur Behandlung von Sickerwasser aus Hausmuelldeponien, ATV-Seminar, Magdeburg

  34. Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J WPCF 48(5):835–852

    CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank Dr. Marcin Bizukojć for making the program Easyfit available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Kaczorek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaczorek, K., Ledakowicz, S. Kinetics of nitrogen removal from sanitary landfill leachate. Bioprocess Biosyst Eng 29, 291–304 (2006). https://doi.org/10.1007/s00449-006-0078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0078-8

Keywords

Navigation