Skip to main content
Log in

Very high ethanol productivity in an innovative continuous two-stage bioreactor with cell recycle

  • Original paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The performance of an innovative two-stage continuous bioreactor with cell recycle—potentially capable of giving very high ethanol productivity—was investigated. The first stage was dedicated to cell growth, whereas the second stage was dedicated to ethanol production. A high cell density was obtained by an ultrafiltration module coupled to the outlet of the second reactor. A recycle loop from the second stage to the first one was tested to improve cell viability and activity. Cultivations of Saccharomyces cerevisiae in mineral medium on glucose were performed at 30°C and pH 4. At steady state, total biomass concentrations of 59 and 157 gDCW l−1 and ethanol concentrations of 31 and 65 g l−1 were obtained in the first and second stage, respectively. The residual glucose concentration was 73 g l−1 in the first stage and close to zero in the second stage. The present study shows that a very high ethanol productivity (up to 41 g l−1 h−1) can indeed be obtained with complete conversion of the glucose and with a high ethanol titre (8.3°GL) in the two-stage system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ac:

Acetic acid concentration (g l−1)

BalanceC :

Carbon balance (Cmol h−1 l−1)

BalanceR :

Degree of reduction balance (Cmol h−1 l−1)

G :

Glycerol concentration (g l−1)

M Ac :

Molar mass of acetic acid (30 g Cmol−1)

\(M_{{{{\rm CO}}_{2} }}\) :

Molar mass of carbon dioxide (44 g Cmol−1)

M G :

Molar mass of glycerol (30.67 g Cmol−1)

\(M_{{{{\rm O}}_{2} }}\) :

Molar mass of oxygen (32 g Cmol−1)

M P :

Molar mass of ethanol (23 g Cmol−1)

M S :

Molar mass of glucose (30 g Cmol−1)

M Suc :

Molar mass of succinic acid (29.5 g Cmol−1)

M X :

Molar mass of biomass (26.3 g Cmol−1)

P :

Ethanol concentration (g l−1)

q Ac :

Acetic acid specific production rate (g g−1 h−1)

\(q_{{{{\rm CO}}_{2} }}\) :

Carbon dioxide specific production rate (g g−1 h−1)

Q f :

Volumetric feeding rate (l h−1)

q G :

Glycerol specific production rate (g g−1 h−1)

\(q_{{{{\rm O}}_{2} }}\) :

Oxygen specific consumption rate (g g−1 h−1)

q P :

Ethanol specific production rate (g g−1 h−1)

Q m :

Volumetric medium feed flow rate (l h−1)

Q p :

Volumetric flow rate of the outlet permeate (l h−1)

Q pg :

Volumetric flow rate of the second stage bleed (l h−1)

q S :

Glucose specific consumption rate (g g−1 h−1)

Q s :

Volumetric substrate feed flow rate (l h−1)

Q w :

Volumetric water feeding rate (l h−1)

Q 12 :

Volumetric flow rate from first stage to second stage (l h−1)

Q 21 :

Volumetric flow rate from second stage to first stage (l h−1)

r Ac :

Acetic acid consumption rate (g l−1 h−1)

\(r_{{{{\rm CO}}_{2} }}\) :

Carbon dioxide production rate (g l−1 h−1)

r G :

Glycerol production rate (g l−1 h−1)

\(r_{{{{\rm O}}_{2} }}\) :

Oxygen consumption rate (g l−1 h−1)

r P :

Ethanol production rate (g l−1 h−1)

R Q :

Respiratory quotient (mol mol−1)

r S :

Glucose consumption rate (g l−1 h−1)

r Suc :

Succinic acid production rate (g l−1 h−1)

\(r_{{X_{\rm v}}}\) :

Viable cell growth rate (g l−1 h−1)

S :

Substrate concentration (g l−1)

S f :

Substrate concentration feed (g l−1)

Suc:

Succinic acid concentration (g l−1)

t :

Time (s)

V :

Volume (l)

X t :

Total cell concentration (g l−1)

X v :

Viable cell concentration (g l−1)

Y•/S :

Yield on substrate (g g−1)

Y•/X :

Yield on biomass (g g−1)

λAc :

Reduction degree of acetic acid Cmole (4.0)

λG :

Reduction degree of glycerol Cmole (4.67)

\(\lambda_{{{{\rm O}}_{2} }}\) :

Reduction degree of oxygen (−4.0)

λP :

Reduction degree of ethanol Cmole (6.0)

λS :

Reduction degree of glucose Cmole (4.0)

λSucc :

Reduction degree of succinic acid Cmole (3.5)

λX :

Reduction degree of biomass Cmole (4.2)

μ:

Specific growth rate (h−1)

ρ:

Cell dry mass per unit of wet cells (g l−1)

g :

Global

1 :

First reactor

2 :

Second reactor

References

  1. Damiano D, Shin CS, Ju N, Wang SS (1985) Performance, kinetics, and substrate utilization in a continuous yeast fermentation with cell recycle by ultrafiltration membranes. Appl Microbiol Biotechnol 21:69–77

    Article  CAS  Google Scholar 

  2. Lee CW, Chang HN (1986) Kinetics of ethanol fermentations in membrane cell recycle fermentors. Biotechnol Bioeng 24:1105–1112

    Google Scholar 

  3. Lafforgue C, Malinowski J, Goma G (1987) High yeast concentration in continuous fermentation with cell recycle obtained by tangential microfiltration. Biotechnol Lett 9:347–352

    Article  Google Scholar 

  4. Chang HN, Yang JW, Park YS, Kim DJ, Han KC (1992) Extractive ethanol production in a membrane cell recycle bioreactor. J Biotechnol 24:329–343

    Article  CAS  Google Scholar 

  5. Groot WJ, Sikkenk CM, Waldram RH, Van der Lans RGJM, Luyben KCAM (1992) Kinetics of ethanol production by baker’s yeast in an integrated process of fermentation and microfiltration. Bioprocess Eng 8:39–47

    Article  CAS  Google Scholar 

  6. Escobar JM, Rane KD, Cheryan M (2001) Ethanol production in membrane bioreactor. Appl Biochem Biotechnol 91–93:283–296

    Article  PubMed  Google Scholar 

  7. Park BG, Lee WG, Chang YK, Chang HN (1999) Long-term operation of continuous high cell density culture of Saccharomyces cerevisiae with membrane filtration and on-line cell concentration monitoring. Bioproc Eng 21:97–100

    CAS  Google Scholar 

  8. Nishiwaki A, Dunn IJ (1998) Analysis of a two-stage fermentor with recycle for continuous ethanol production. Chem Eng Commun 168:207–227

    Article  CAS  Google Scholar 

  9. Nishiwaki A, Dunn IJ (1999) Analysis of the performance of a two-stage fermentor with cell recycle for continuous ethanol production using different kinetic models. Biochem Eng J 4:37–44

    Article  CAS  Google Scholar 

  10. Winter JF (1988) Fermentation alcoolique par Saccharomycces cerevisiae: contribution à l’étude du contrôle de la dynamique fermentaire par l‘inhibition et les facteurs nutritionnels. Institut national des Sciences Appliquées de Toulouse. PhD Thesis

  11. Alfenore S, Molina-Jouve C, Guillouet SE, Uribelarrea JL, Goma G, Benbadis L (2002) Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Appl Microbiol Biotechnol 60:67–72

    Article  PubMed  CAS  Google Scholar 

  12. Grosz R, Stephanopoulos G (1990) Physiological, biochemical and mathematical studies of microaerobic continuous ethanol fermentation by Saccharomyces cerevisiae. Part I. Biotechnol Bioeng 36:1006–1019

    Article  CAS  Google Scholar 

  13. Hoppe GK, Hansford GS (1984) The effects of micro-aerobic conditions on continuous ethanol production. Biotechnol Lett 6:681–686

    Article  CAS  Google Scholar 

  14. Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeast. FEMS Microbiol 32:199–224

    Article  Google Scholar 

  15. Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J. (2000) Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 16:463–474

    Article  PubMed  CAS  Google Scholar 

  16. Costenoble R, Adler L, Niklasson C, Liden G (2003) Engineering of the metabolism of Saccharomyces cerevisiae for anaerobic production of mannitol. FEMS Yeast 3:17–25

    CAS  Google Scholar 

  17. Alfenore S, Cameleyre X, Benbadis L, Bideaux C, Uribelarrea JL, Goma G, Molina-Jouve C, Guillouet SE (2004) Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl Microbiol Biotechnol 63:537–542

    Article  PubMed  CAS  Google Scholar 

  18. Egli T, Fiechter A (1981) Theoretical analysis of media used in the growth of yeast on methanol. J Gen Microbiol 123:365–369

    CAS  Google Scholar 

  19. Monbouquette HG (1987) Models for high cell density reactors must consider biomass volume fraction: cell recycle example. Biotechnol Bioeng 29:1075–1080

    Article  CAS  Google Scholar 

  20. Atala DIP, Costa AC, Maciel R, Maugeri F (2001) Kinetics of ethanol fermentation with high biomass concentration considering the effect of temperature. Appl Biochem Biotechnol 91–93:353–365

    Article  PubMed  Google Scholar 

  21. Monbouquette HG (1992) Modeling high-biomass-density cell recycle fermentors. Biotechnol Bioeng 39:498–503

    Article  CAS  Google Scholar 

  22. Jarzebski AB, Malinowski JJ, Goma G. (1989) Modeling of ethanol fermentation at high yeast concentrations. Biotechnol Bioeng 34:1225–1230

    Article  CAS  Google Scholar 

  23. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical Press

  24. Kargupta K, Datta S, Sanyal SK (1998) Analysis of the performance of a continuous membrane bioreactor with cell recycling during ethanol fermentation. Biochem Eng J 1:31–37

    Article  CAS  Google Scholar 

  25. Winter JF, Loret MO, Uribelarrea JL (1989) Inhibition and growth factor deficiencies in alcoholic fermentation by Saccharomyces cerevisiae. Curr Microbiol 18:247–252

    Article  CAS  Google Scholar 

  26. Ludovico P, Sousa MJ, Silva MT, Leao C, Corte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiol 147:2409–2415

    PubMed  CAS  Google Scholar 

  27. Giannattasio S, Guaragnella N, Corte-Real M, Passarella S, Marra E (2005) Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene 354:93–98

    Article  PubMed  CAS  Google Scholar 

  28. Ferreira MM, Loureiro-Dias MC, Loureiro V (1997) Weak acid inhibition of fermentation by Zygosaccharomyces bailii and Saccharomyces cerevisiae. Int J Food Microbiol 36(2–3):145–153

    Article  PubMed  CAS  Google Scholar 

  29. Taherzadeh MJ, Niklasson C, Lidén G (1997) Acetic acid-friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae? Chem Eng Sci 52:2653–2659

    Article  CAS  Google Scholar 

  30. Bakker BM, Overkamp KM, Van Maris AJ, Kotter P, Luttik MA, Van Dijken JP, Pronk JT (2001). Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37

    Article  PubMed  CAS  Google Scholar 

  31. Andre L, Hemming A, Adler L (1991) Osmoregulation in Saccharomyces cerevisiae: studies on the osmotic induction of glycerol production and glycerol 3-phosphate dehydrogenase (NAD+). FEBS Lett 286:13–17

    Article  PubMed  CAS  Google Scholar 

  32. Nevoigt E, Stahl U (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21:231–241

    Article  PubMed  CAS  Google Scholar 

  33. Omori T, Ogawa K, Umemote Y, Yuki K, Kajihara Y, Shimoda M, Wada H (1996) Enhancement of glycerol production by brewing yeast (Saccharomyces cerevisiae) with heat shock treatment. J Ferment Bioeng 82:187–190

    Article  CAS  Google Scholar 

  34. Kajiwara Y, Ogawa K, Takashita H, Omori T (2000) Enhanced glycerol production in Shochu yeast by heat-shock treatment is due to prolonged transcription of GPD1. J Biosci Bioeng 90:121–123

    PubMed  CAS  Google Scholar 

  35. Aldiguier AS, Alfenore S, Cameleyre X, Goma G, Uribelarrea JL, Guillouet SE, Molina-Jouve C (2004) Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production. Bioprocess Biosyst Eng 26:217–222

    Article  PubMed  CAS  Google Scholar 

  36. Remize F, Roustan JL, Sablayrolles JM, Barre P, Dequin S (1999) Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl Env Microbiol 65:143–149

    CAS  Google Scholar 

  37. Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J (2000) Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast 16:463–474

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Molina-Jouve.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Chaabane, F., Aldiguier, A.S., Alfenore, S. et al. Very high ethanol productivity in an innovative continuous two-stage bioreactor with cell recycle. Bioprocess Biosyst Eng 29, 49–57 (2006). https://doi.org/10.1007/s00449-006-0056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0056-1

Keywords

Navigation