Skip to main content
Log in

Breakthrough performance of linear-DNA on ion-exchange membrane columns

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Breakthrough performance of linear-DNA adsorption on ion-exchange membrane columns was theoretically and experimentally investigated using batch and fixed-bed systems. System dispersion curves showed the absence of flow non-idealities in the experimental arrangement. Breakthrough curves were not significantly affected by flow-rate or inlet solution concentration. In the theoretical analysis a model was integrated by the serial coupling of the membrane transport model and the system dispersion model. A transport model that considers finite kinetic rate and column dispersed flow was used in the study. A simplex optimization routine coupled to the solution of the partial differential model equations was employed to estimate the maximum adsorption capacity constant, the equilibrium desorption constant and the forward interaction rate-constant, which are the parameters of the membrane transport model. Through this approach a good prediction of the adsorption phenomena is obtained for inlet concentrations and flow rates greater than 0.2 mg/ml and 0.16 ml/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A :

membrane column cross-sectional area (cm2)

c :

DNA concentration in the bulk phase (mg/ml)

c o :

DNA concentration in the bulk phase at column inlet (mg/ml)

C exp i :

experimental values of the DNA dimensionless concentration at time t

c out :

CSTR effluent DNA concentration (mg/ml)

C simi :

simulated values of the DNA dimensionless concentration at time t

d m :

membrane diameter (cm)

d p :

average pore diameter (cm)

D ax :

axial dispersion coefficient (cm2/s)

F :

volumetric flow-rate (ml/min)

k 1 :

forward adsorption rate constant (ml/mg s)

k −1 :

reverse adsorption rate constant (1/s)

K :

number of parameters to be estimated

K d :

dissociation constant (mg/ml)

L :

length of membrane column (μm)

L m :

membrane thickness (μm)

n :

number of data points in the experiment

q :

average protein concentration (mg/ml)

q m :

maximum binding capacity of the membrane, mg/ml based in bed volume

t :

time (s)

\(\bar{t}\) :

residence time in the chromatographic system (min)

V :

column volume (cm3)

V ext :

external volume (cm3)

V sys :

system volume (cm3)

V CSTR :

CSTR volume (cm3)

V PFR :

PFR volume (cm3)

z :

axial distance along the membrane column (cm)

ɛ:

void fraction of the fixed bed

υ :

interstitial velocity (cm/s)

References

  1. Stadler J, Lemmens R, Nyhammar T (2004) Plasmid DNA purification. J Gene Med 6:554–566

    Article  Google Scholar 

  2. Schalk I, Hegger PM, Jongen JM (2001) Gene therapeutics and DNA vaccines, quality and regulatory aspects. National Institute of Public Health and Environment. RIVM report 605200 001

  3. Diogo MM, Queiroz JA, Prazeres DMF (2005) Chromatography of plasmid DNA. J Chromatogr A 1069:3–22

    Article  CAS  Google Scholar 

  4. Prazeres DMF, Ferreira GNM (2004) Design of flowsheets for the recovery and purification of plasmids for gene therapy and DNA vaccination. Chem Eng Proccess 43:615–630

    Google Scholar 

  5. Gustavsson P, Lemmensb R, Nyhammarb T, Busson P, Larsson P (2004) Purification of plasmid DNA with a new type of anion-exchange beads having a non-charged surface. J Chromatogr A 1038:131–140

    Article  CAS  Google Scholar 

  6. Teeters MA, Root TW, Lightfoot EN (2004) Adsorption and desorption behavior of plasmid DNA on ion-exchange membranes. Effect of salt valence and compactation agents. J Chromatogr A 1036:73–78

    Article  CAS  Google Scholar 

  7. Zhang S, Krivosheyeva A, Nochumson S (2003) Large-scale capture and partial purification of plasmid DNA using anion-exchange membrane capsules. Biotechnol Appl Biochem 37:245–249

    Article  CAS  Google Scholar 

  8. Teeters MA, Conrardy SE, Thomas BL, Root TW, Lightfoot EN (2003) Adsorptive membrane chromatography for purification of plasmid DNA. J Chromatogr A 989:165–173

    Article  CAS  Google Scholar 

  9. Grundwald A, Shields MS (2001) Plasmid purification using membrane-based anion-exchange chromatography. Anal Biochem 296:138–141

    Article  Google Scholar 

  10. Giovanni R, Freitag R (1998) High-performance membrane chromatography of supercoiled plasmid DNA. Anal Chem 70:3348–3354

    Article  Google Scholar 

  11. Demmer W, Nussbaumer D (1999) Large-scale membrane adsorbers. J Chromatogr A 852:73–81

    Article  CAS  Google Scholar 

  12. Fischer-Frühholz S (2005) Membrane adsorbers Part 1. GIT Lab J 2:53–55

    Google Scholar 

  13. Roper DK, Lightfoot EN (1995) Separation of biomolecules using adsorptive membranes. J Chromatogr A 702:3–26

    Article  CAS  Google Scholar 

  14. Zeng X, Ruckenstein E (1999) Membrane chromatography: preparation and applications to protein separation. Biotechnol Prog 15:1003–1019

    Article  CAS  Google Scholar 

  15. Charcosset C (1998) Purification of proteins by membrane chromatography. Chem Technol Biotechnol 71:95–110

    Article  CAS  Google Scholar 

  16. Thömes J, Kula MR (1995) Membrane chromatography. An integrative concept in the downstream processing of proteins. Biotechnol Prog 11:357–367

    Article  Google Scholar 

  17. Brandt S, Goffe RA, Kessler SB, O’Connors JL, Zale SE (1988) Membrane-based affinity technology for commercial scale purifications. Bio/Technology 6:779–782

    Article  CAS  Google Scholar 

  18. Tejeda-Mansir A, Montesinos RM, Guzmán R (2001) Mathematical analysis of frontal affinity chromatography in particle and membrane configurations. J Biochem Biophys Methods 49:1–28

    Article  CAS  Google Scholar 

  19. Ghosh R (2002) Protein separation using membrane chromatography: opportunities and challenges. J Chromatogr A 952:13–27

    Article  CAS  Google Scholar 

  20. Klein E (1991) Affinity membranes. Their chemistry and performance in adsorptive separation process. Wiley, New York

    Google Scholar 

  21. Suen S, Etzel MR (1992) A mathematical analysis of affinity membrane bioseparations. Chem Eng Sci 47:1355–1364

    Article  CAS  Google Scholar 

  22. Liu H, Fried JR (1994) Breakthrough of lysozyme through an affinity membrane of cellulose-Cibacron Blue. AIChE J 40:40–49

    Article  CAS  Google Scholar 

  23. Shiosaki A, Goto M, Hirose T (1994) Frontal analysis of protein adsorption on a membrane adsorber. J Chromatogr A 679:1–9

    Article  CAS  Google Scholar 

  24. Yang H, Viera C, Fischer J, Etzel MR (2002) Purification of large protein using ion-exchange membranes. Ind Eng Chem Res 41:1597–1602

    Article  CAS  Google Scholar 

  25. Kochan JE, Wu Y, Etzel MR (1996) Purification of bovine immunoglobulin G via protein G affinity membranes. Ind Eng Chem Res 35:1150–1155

    Article  CAS  Google Scholar 

  26. Dancette OP, Taboureau J, Tournier E, Charcosset C, Blond P (1999) Purification of immunoglobulins G by protein A/G affinity membrane chromatography. J Chromatogr B 723:61–68

    Article  CAS  Google Scholar 

  27. Enders HN, Johnson JA, Ross CA, Welp JK, Etzel MR (2003) Evaluation of an ion-exchange membrane for the purification of plasmid DNA. Biotechnol Appl Biochem 37:259–266

    Article  Google Scholar 

  28. Yang H, Etzel MR (2003) Evaluation of three kinetic equations in models of protein purification using ion-exchange membranes. Ind Eng Chem Res 42:890–896

    Article  CAS  Google Scholar 

  29. Chase HA (1984) Prediction of the performance of preparative affinity chromatography. J Chromatogr 297:179–202

    Article  CAS  Google Scholar 

  30. Haber C, Skupsky J, Lee A, Lander R (2004) Membrane chromatography of DNA: conformation-induced capacity and selectivity. Biotechnol Bioeng 88:26–34

    Article  CAS  Google Scholar 

  31. Sarfert FT, Etzel MR (1997) Mass transfer limitations in protein separations using ion-exchange membranes. J Chromatogr A 764:3–20

    Article  CAS  Google Scholar 

  32. Yang H, Bitzer M, Etzel MR (1999) Analysis of protein purification using ion-exchange membranes. Ind Eng Chem Res 38:4044–4050

    Article  CAS  Google Scholar 

  33. Lightfoot EN, Lenhoff AM, Rodriguez RL (1982) Use of moments to characterize mass transport in steady flows of arbitrary complexity. Chem Eng Sci 37:954–956

    Article  CAS  Google Scholar 

  34. Spalding DB (1958) A note on mean residence-times in steady flows of arbitrary complexity. Chem Eng Sci 9:74–77

    Article  CAS  Google Scholar 

  35. Silebi CA, Schiesser WE (1992) Dynamic modeling of transport process systems. Academic, San Diego, p 518

    Google Scholar 

  36. Avci AK, Camurdan MC, Ulgen KO (2000) Quantitative description of protein adsorption by frontal analysis. Process Biochem 36:141–148

    Article  CAS  Google Scholar 

  37. He L, Niemeyer B (2003) A novel correlation for protein diffusion coefficients based on molecular weight and radius of gyration. Biotechnol Prog 19:544–548

    Article  CAS  Google Scholar 

  38. Jungbauer A (1996) Insights into the chromatography of proteins provided by mathematical modeling. Curr Opin Biotechnol 7:210–218

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support of this work by the Consejo Nacional de Ciencia y Tecnología de México under grant U39963-Z, CINVESTAV-IPN and the Universidad de Sonora.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Tejeda-Mansir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montesinos-Cisneros, R.M., Ortega, J., Guzmán, R. et al. Breakthrough performance of linear-DNA on ion-exchange membrane columns. Bioprocess Biosyst Eng 29, 91–98 (2006). https://doi.org/10.1007/s00449-006-0055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0055-2

Keywords

Navigation