Skip to main content
Log in

Magnetization influence on the performance of ferrosoferric oxide: polyacrylonitrile membranes in ultrafiltration of pig blood solution

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Three kinds of membranes were prepared from suspensions containing polyacrylonitrile, dimethyl sulfoxide, polyethylene glycol and different amount of Fe3O4 by the phase inversion process. The rejection rate and the flux of membrane were investigated in the filtration of pig blood solution. SEM also studied the morphologies of fouled membranes. The permeate flux and the rejection rate decline fast in the initial several minutes and then change slowly. The magnetized membrane has a higher flux and a relative flux than the corresponding non-magnetized membrane. And the magnetized membrane containing about 3 wt% Fe3O4 has a prominent anti-fouling performance with above 52% relative flux. The results indicate that the magnetized ferrosoferric oxide–polyacrylonitrile membranes are promising in the recovery of blood proteins in the slaughterhouse effluents. In addition, the hydraulic resistance model explained results and the fouling mechanism was also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A :

membrane area (m2)

C f :

concentration of feed (mg L−1)

C p :

concentration of permeate (mg L−1)

J b :

pig blood solution flux (L m−2 h−1)

J bp :

pure water flux through a fouled membrane (L m−2 h−1)

J p :

pure water flux (L m−2 h−1)

J r :

relative water flux (%)

R 0 :

apparent membrane rejection rate (%)

R a :

hydraulic resistance of the absorbed layer (m−1)

R b :

rejection rate of pig blood solution (%)

R m :

hydraulic membrane resistance (m−1)

t :

filtration time

V :

permeate volume (L)

μ :

water viscosity at 25°C (0.0089 Pa s)

ΔP :

operation pressure (P a)

References

  1. Sattelee LD, Free B, Leven B (1973) Utilization of high protein tissue powders as binder/extender in meat emulsion. J Food Sci 38:306–309

    Article  Google Scholar 

  2. Fernando T (1981) Concentration of animal blood by ultrafiltration. Biotechnol Bioeng 23:19–27

    Article  Google Scholar 

  3. Moure F, Rendueles M, Díaz M (2004) Bovine plasma protein fractionation by ion exchange chromatography. Bioprocess Biosyst Eng 27:17–24

    Article  PubMed  CAS  Google Scholar 

  4. Meireles M, Lavoute E, Bacchin P (2003) Filtration of a bacterial fermentation broth: harvest conditions effects on cake hydraulic resistance. Bioprocess Biosyst Eng 25:309–314

    PubMed  CAS  Google Scholar 

  5. Thomas OM, Jaouen P, Legentilhomme P (2002) The role of exopolysaccharides in fouling phenomenon during ultrafiltration of microalgae. Bioprocess Biosyst Eng 25:35–42

    Article  PubMed  CAS  Google Scholar 

  6. Grigorov V, Markov E, Rusev J (1986) Studies on the optimum parameters of concentrating blood plasma by ultrafiltration. Proc Eur Meet Meat Res Workers 32:375–377

    Google Scholar 

  7. Rendueles M, Moure F, Fernández A, Diaz M (1996) Preliminary studies on the processing of slaughter-house blood for protein recovery. Resour Environ Biotechnol 1:193–206

    Google Scholar 

  8. Juárez CG, Castellanos R, Noyola TP, Calderón V, Figueroa J (1999) Protein recovery from slaughterhouse wastes. Bioresour Technol 70:129–133

    Article  Google Scholar 

  9. Belhocine D, Grib H, Abdessmed D, Comeau Y, Mameri N (1998) Optimization of plasma proteins concentration by ultrafiltration. J Membr Sci 142:159–171

    Article  CAS  Google Scholar 

  10. Torres MR, Marín FR, Ramos AJ, Soriano E (2002) Study of operating conditions in concentration of chicken blood plasma proteins by ultrafiltration. J Food Eng 54:215–219

    Article  Google Scholar 

  11. Jaffrin MY, Ding LH, Defossez M, Laurent JM (1995) Interpretation of transient ultrafiltration and microfiltration of blood and protein solutions. Chem Eng Sci 6:907–915

    Article  Google Scholar 

  12. Noordman TR, Jonge AD, Wesselingh JA, Bel W, Dekker M, Voorde ET, Grijipma SD (2002) Application of fluidised particles as turbulence promoters in ultrafiltration: improvement of flux and rejection. J Membr Sci 208:157–169

    Article  CAS  Google Scholar 

  13. Lo YM, Cao DH, Soysal SA, Wang J, Hahm TS (2005) Recovery of protein from poultry processing wastewater using membrane ultrafiltration. Bioresour Technol 96:687–698

    Article  PubMed  CAS  Google Scholar 

  14. Taniguchi M, Belfort G (2004) Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type. J Membr Sci 231:147–157

    Article  CAS  Google Scholar 

  15. Nie FQ, Xu ZK, Ye P, Wu J, Seta P (2004) Acrylonitrile-based copolymer membranes containing reactives groups: effects of surface-immobilized poly (ethylene glycol)s on anti-fouling properties and blood compatibility. Polymer 45:399–407

    Article  CAS  Google Scholar 

  16. Mueller J, Davis RH (1996) Protein fouling of surface-modified polymeric microfiltration membranes. J Membr Sci 116:47–60

    Article  CAS  Google Scholar 

  17. Musale DA, Kulkarni SS (1996) Fouling reduction in poly (acrylonitrile-co-acrylamide) ultrafiltration membranes. J Membr Sci 111:49–56

    Article  CAS  Google Scholar 

  18. Torres MR, Ramos AJ, Soriano E (1998) Ultrafiltration of blood proteins by experimental polyamide membranes. Bioprocess Eng 19:213–215

    Article  CAS  Google Scholar 

  19. Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2003) Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials 24:4143–4152

    Article  PubMed  CAS  Google Scholar 

  20. Moaddeb MW, Koros J (1997) Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. J Membr Sci 125:143–152

    Article  CAS  Google Scholar 

  21. Finken H (1983) Bentonite-stabilized CDA/CTA membranes. I.Improved long-term transport properties. Desalination 48:207–221

    Article  CAS  Google Scholar 

  22. Vankelecom IFJ, Depré S, Beukelaer D, Uytterhocven JB (1995) Influence of zeolites in PDMS membranes: pervaporation of water/alcohol mixtures. J Phys Chem 99:13193–13197

    Article  CAS  Google Scholar 

  23. Bottino A, Capannelli G, D’Asti VP, Piaggio P (2001) Preparation and properties of novel organic–inorganic porous membranes. Sep Purif Technol 22–23:269–275

    Article  Google Scholar 

  24. Schaep J, Vandecasteele C, Leysen R, Doyen W (1998) Salt retention of Zircon® membranes. Sep Purif Technol 14:127–131

    Article  CAS  Google Scholar 

  25. Sousa MH, Rubin JC, Sobrinho PG (2001) Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures. J Magn Mater 225(1–2):67–72

    Article  CAS  Google Scholar 

  26. Qin JJ, Cao YM, Li YQ, Li Y, Oo MH, Lee H (2004) Hollow fiber ultrafiltration membranes made from blends of PAN and PVP. Sep Purif Technol 36:149–155

    Article  CAS  Google Scholar 

  27. Babu PR, Gaikar VG (2001) Membrane characteristics as determinant in fouling of UF membranes. Sep Purif Technol 24:23–34

    Article  CAS  Google Scholar 

  28. Tong PS, Barbano DM, Rudan MA (1988) Characterisation of proteinaceous membrane foulants and flux decline during the early stages of whole milk filtration. J Dairy Sci 71:604–612

    Article  CAS  Google Scholar 

  29. Huisman IH, Prádanos P, Hernández A (2000) The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration. J Membr Sci 179:79–90

    Article  CAS  Google Scholar 

  30. Higashi T, Yamagishi A, Takeuchi T, Date M (1995) Effects of static magnetic field on erythrocyte rheology. Bioelectrochem Bioenerg 36:101–108

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Qing Huang.

Additional information

The National Natural Science Foundation of China (Project No.20476023) and the Education Department of Hubei Province (Project No. 2001A02003) funded this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, ZQ., Guo, XP., Guo, CL. et al. Magnetization influence on the performance of ferrosoferric oxide: polyacrylonitrile membranes in ultrafiltration of pig blood solution . Bioprocess Biosyst Eng 28, 415–421 (2006). https://doi.org/10.1007/s00449-006-0050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0050-7

Keywords

Navigation