Skip to main content
Log in

Cu2+ Removal and recovery by Spi SORB: batch stirred and up-flow packed bed columnar reactor systems

  • Original paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The biosorption of Cu2+ by free and poly acrylamide gel (PAG) immobilized Spirulina platensis (SpiSORB) was characterized under batch and continuous packed bed columnar reaction systems. The biosorption of Cu2+ was shown to be highest at pH of 6.0 for both types of biomass. The PAG immobilization process did not interfere with the Cu2+ binding sites present on biomass leading to cent percent (ca. 250 mg g−1 of dry biomass) retention of biosorption as compared to free cells. Transmission electron microscopy on Cu2+ localization revealed that majority of metal is being sequestered by the cell wall only. The infrared spectrum of metal treated S. platensis biomass indicated the possible involvement of amide, amino, and carboxyl groups in metal binding. Up-flow packed bed columnar reactor containing 2.0 g of PAG immobilized S. platensis shown a maximum of 143-fold volume reduction factor at the residence time of 4.6 min for Cu2+ alone and found to decrease dramatically when Zn2+ is present in a bimetallic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  PubMed  CAS  Google Scholar 

  2. Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microb Rev 27:411–425

    Article  CAS  Google Scholar 

  3. Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  PubMed  CAS  Google Scholar 

  4. Volesky B (1990) Biosorption by fungal biomass. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 139–171

    Google Scholar 

  5. Scott CD (1987) Immobilized cells: a review of recent literature. Enzyme Microbiol Technol 9:66–73

    Article  CAS  Google Scholar 

  6. Shilo M (1989) The unique characteristics of benthic cyanobacteria. In: Cohen Y, Rosenberg E (eds) Microbial mat: Physiological ecology of benthic microbial communities. ASM, Washington, DC, pp 207–213

    Google Scholar 

  7. Borbely G, Suranyi GS, Kos P (1990) Stress responses of cyanobacteria and the pleiotropic effects of light deprivation. FEMS Microbiol Ecol 74:141–152

    Article  CAS  Google Scholar 

  8. Raveender V, Scaria J, Verma SK (2002) Application of mutant strains of cyanobacteria for cadmium removal. Bull Environ Contamin Toxicol 69:632–637

    Article  CAS  Google Scholar 

  9. Singh SP, Yadava V (1986) Cadmium tolerance in the cyanobacterium Anacystis nidulans. Biol Zentralbl 105:539–542

    CAS  Google Scholar 

  10. Silver S, Misra TK (1988) Plasmid-mediated heavy metal resistance. Annu Rev Microbiol 42:717–743

    Article  PubMed  CAS  Google Scholar 

  11. Zhang W, Majidi V (1994) Monitoring the cellular response of Stichococcus bacillaris to exposure of several different metals using in vivo 31P NMR and other spectroscopic techniques. Environ Sci Technol 28:1577–1581

    Article  CAS  Google Scholar 

  12. Verma SK, Singh HN (1991) Evidence for energy-dependent copper efflux as a mechanism of Cu2+ resistance in the cyanobacterium Nostoc calcicola. FEMS Microbiol Lett 84:291–294

    Article  CAS  Google Scholar 

  13. Chao ZX (1994) The effect of Spirulina spp. on the health of middle-aged gerotism people. Ocean Sci 6:87–88

    Google Scholar 

  14. Hu MZ-C, Reeves ME (1997) Biosorption of Uranium by Pseudomonas aeruginosa Strain CSU immobilized in a novel matrix. Biotechnol Prog 13:60–70

    Article  CAS  Google Scholar 

  15. Ogawa T, Terui G (1970) Studies on the growth of Spirulina platensis. J Ferment Technol 48:361–367

    Google Scholar 

  16. Figueira MM, Volesky B, Mathieu HJ (1999) Instrumental analysis study of iron species biosorption by Sargassum biomass. Environ Sci Technol 33:1840–1846

    Article  CAS  Google Scholar 

  17. Schneider IAH, Rubio J (1999) Sorption of heavy metal ions by the non-living biomass of freshwater macrophytes. Environ Sci Technol 33:2213–2217

    Article  CAS  Google Scholar 

  18. Zhou JL (1999) Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biotechnol 51:686–693

    Article  CAS  Google Scholar 

  19. Hu MZ-C, Norman JM, Faison BD, Reeves ME (1996) Biosorption of uranium by Pseudomonas aeruginosa CSU—Characterization and comparison studies. Biotechnol Bioeng 51:237–247

    Article  Google Scholar 

  20. Mallick N (2003) Biotechnological potential of Chlorella vulgaris for accumulation of Cu and Ni from single and binary metal solutions. World J Microbiol Biotechnol 19:695–701

    Article  CAS  Google Scholar 

  21. Al-Asheh S, Duvnjak Z (1995) Adsorption of copper and chromium by Aspergillus carbonarius. Biotechnol Prog 11:638–642

    Article  PubMed  CAS  Google Scholar 

  22. Chang JS, Law R, Chang CC (1997) Biosorption of lead, copper, and cadmium by biomass of Pseudomonas aeruginosa PU21. Water Res 31:1651–1658

    Article  CAS  Google Scholar 

  23. Bradenberger HR, Widmer F (1999) Immobilization of concentrated cell suspensions using the laminar jet breakup techniques. Biotechnol Prog 15:366–378

    Article  PubMed  Google Scholar 

  24. Tucker MD, Barton LL, Thomson BM (1998) Removal of U and Mo from water by immobilized Desulfovibrio desulfuricans in column reactors. Biotechnol Bioeng 60:88–96

    Article  PubMed  CAS  Google Scholar 

  25. Prasad BB, Pandey UC (2000) Separation and preconcentration of copper and cadmium ions from multimetal solutions using Nostoc muscorum-based biosorbents. World J Microbiol Biotechnol 16:819–827

    Article  CAS  Google Scholar 

  26. De Philippis R, Paperi R, Sili C, Massimo V (2003) Assessment of the metal removal capability of two capsulated cyanobacteria, Cyanospira capsulata and Nostoc PCC7936. J Appl Phycol 15:155–161

    Article  Google Scholar 

  27. Puranik PR, Paknikar KM (1999) Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B—181: characterization studies. Biotechnol Prog 15:228–237

    Article  PubMed  CAS  Google Scholar 

  28. Andrea E, Benno K (1995) Biosorption of heavy metals by Saccharomyces cerevisiae: effects of nutrient conditions. J Chem Tech Biotechnol 63:257–261

    Article  Google Scholar 

  29. Flemming CA, Perris FG, Beveridge TJ, Bailey GW (1990) Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites. Appl Environ Microbiol 56:3191–3203

    PubMed  CAS  Google Scholar 

  30. Davis TA, Volesky B, Vieira RHSF (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278

    Article  CAS  Google Scholar 

  31. Sar P, D’Souza SF (2002) Biosorption of thorium by a Pseudomonas biomass. Biotechnol Lett 24:239–243

    Article  CAS  Google Scholar 

  32. Asthana RK, Chatterjee S, Singh SP (1995) Investigatiions on nickel biosorption and its remobilization. Proc Biochem 30:729–734

    Article  CAS  Google Scholar 

  33. Davis-Hoover WJ, Brackett KA, Vesper SJ (1998) Pseudomonas aeruginosa that sequesters lead. Abstr Gen Meet Am Soc Microbiol 98 Meet, 408

  34. McLean RJC, Fortin D, Brown DA (1996) Microbial metal-binding mechanisms and their relation to nuclear waste disposal. Can J Microbiol 42:392–400

    Article  CAS  Google Scholar 

  35. Wang CL, Michels PC, Dawson SC, Kitisakkul S, Baross JA, Keasling JD, Clark DS (1997) Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl Environ Microbiol 63:4075–4078

    PubMed  CAS  Google Scholar 

  36. Kuyucak N, Volesky B (1989) The mechanism of cobalt biosorption. Biotechnol Bioeng 33:823–831

    Article  CAS  Google Scholar 

  37. Fogarty RV, Dostalek P, Patzak M, Votruba J, Tel-Or E, Tobin JM (1999) Metal removal by immobilized and non-immobilized Azolla filiculoides. Biotechnol Tech 13:533–538

    Article  CAS  Google Scholar 

  38. Tsezos M, McCready RGL, Bell JP (1989) The continuous recovery of Uranium from biologically leached solutions using immobilized biomass. Biotechnol Bioeng 34:10–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raveender Vannela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vannela, R., Verma, S.K. Cu2+ Removal and recovery by Spi SORB: batch stirred and up-flow packed bed columnar reactor systems. Bioprocess Biosyst Eng 29, 7–17 (2006). https://doi.org/10.1007/s00449-006-0049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0049-0

Keywords

Navigation