Skip to main content
Log in

The economics of inclusion body processing

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Many recombinant proteins are often over-expressed in host cells, such as Escherichia coli, and are found as insoluble and inactive protein aggregates known as inclusion bodies (IBs). Recently, a novel process for IB extraction and solubilisation, based on chemical extraction, has been reported. While this method has the potential to radically intensify traditional IB processing, the process economics of the new technique have yet to be reported. This study focuses on the evaluation of process economics for several IB processing schemes based on chemical extraction and/or traditional techniques. Simulations and economic analysis were conducted at various processing conditions using granulocyte macrophage-colony stimulating factor, expressed as IBs in E. coli, as a model protein. In most cases, IB processing schemes based on chemical extraction having a shorter downstream cascade demonstrated a competitive economic edge over the conventional route, validating the new process as an economically more viable alternative for IB processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399

    Article  PubMed  CAS  Google Scholar 

  2. Blanch HW, Clark DS (1997) Biochemical engineering. Marcel Dekker, New York, pp 453–577

    Google Scholar 

  3. Burgess RR (1991) Use of polyethyleneimine in purification of DNA-binding proteins. Methods Enzymol 208:3–10

    PubMed  CAS  Google Scholar 

  4. Choe WS, Middelberg APJ (2001) Direct chemical extraction of a recombinant viral coat protein from Escherichia coli at high cell density. Biotechnol Bioeng 75:451–455

    Article  PubMed  CAS  Google Scholar 

  5. Choe WS, Middelberg APJ (2001) Selective precipitation of DNA by spermine during chemical extraction of insoluble cytoplasmic protein. Biotechnol Prog 17:1107–1113

    Article  PubMed  CAS  Google Scholar 

  6. Choe WS, Clemmitt RH, Rito-Palomares M, Chase HA, Middelberg APJ (2002a) Bioprocess intensification: a radical new process for recovering inclusion body protein. Trans IChemE 80:45–50

    Article  CAS  Google Scholar 

  7. Choe WS, Clemmitt RH, Chase HA, Middelberg APJ (2002b) Comparison of histidine-tag capture chemistries for purification following chemical extraction. J Chromatogr A 953:111–121

    Article  CAS  Google Scholar 

  8. Choe WS, Clemmitt RH, Chase HA, Middleberg APJ (2003) Coupling of chemical extraction and expanded-bed adsorption for simplified inclusion-body processing: optimization using surface plasmon resonance. Biotechnol Bioeng 8:221–232

    Article  CAS  Google Scholar 

  9. Clark EDB (1998) Refolding of recombinant proteins. Curr Opin Biotechnol 9:157–163

    Article  PubMed  Google Scholar 

  10. Clark EDB, Schwarz E, Rudolph R (1999) Inhibition of aggregation side reactions during in vitro protein refolding. Methods Enzymol 309:217–236

    PubMed  Google Scholar 

  11. Clemmitt RH, Chase HA (2000) Immobilised metal affinity chromatography of b-galactosidase from unclarified Escherichia coli homogenates using expanded bed adsorption. J Chromatogr A 874:27–43

    Article  PubMed  CAS  Google Scholar 

  12. Colangeli R, Heijbel A, Williams AM, Manca C, Chan J, Lyashchenko K, Gennaro ML (1998) Three-step purification of lipopolysaccharide-free, polyhistidine-tagged recombinant antigens of Mycobacterium tuberculosis. J Chromatogr B 714:223–235

    Article  CAS  Google Scholar 

  13. Cooke GD, Cranenburgh RM, Hanak JAJ, Ward JM (2003) A modified Escherichia coli protein production strain expressing staphylococcal nuclease, capable of auto-hydrolysing host nucleic acid. J Biotechnol 101:229–239

    Article  PubMed  CAS  Google Scholar 

  14. Demidov V (2004) Proper refolding helps express ‘difficult’ proteins. Drug Discov Dev 7:41

    Google Scholar 

  15. DeWalt BW, Murphy JC, Fox GE, Willson RC (2003) Compaction agent clarification of microbial lysates. Protein Expr Purif 28:220–223

    Article  PubMed  CAS  Google Scholar 

  16. Expanded bed adsorption principles and methods, 18-1124-26 Edition AB, Amersham Pharmacia Biotech

  17. Falconer RJ, O’Neill BK, Middelberg AP (1997) Chemical treatment of Escherichia coli: 1. Extraction of intracellular protein from uninduced cells. Biotechnol Bioeng 53:453–458

    Article  CAS  Google Scholar 

  18. Falconer RJ, O’Neill BK, Middelberg AP (1998) Chemical treatment of Escherichia coli: II. Direct extraction of a recombinant protein from cytoplasmic inclusion bodies in intact cells. Biotechnol Bioeng 57:381–386

    Article  PubMed  CAS  Google Scholar 

  19. Falconer RJ, O’Neill BK, Middelberg AP (1999) Chemical treatment of Escherichia coli: 3. Selective extraction of a recombinant protein from cytoplasmic inclusion bodies in intact cells. Biotechnol Bioeng 62:455–460

    Article  PubMed  CAS  Google Scholar 

  20. Fischer B, Sumner I, Goodenough P (1993) Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies. Biotechnol Bioeng 41:3–13

    Article  CAS  Google Scholar 

  21. Harrison RG, Todd P, Rudge SR, Petrides DP (2002) Bioprocess design. In: Bioseparations science and engineering. Oxford University Press, Oxford, pp 319–372

  22. Heebøll-Nielsen A, Choe WS, Middelberg APJ, Thomas ORT (2003) Efficient inclusion body processing using chemical extraction and high gradient magnetic fishing. Biotechnol Prog 19(3):887–898

    Article  PubMed  CAS  Google Scholar 

  23. Helander IM, Alakomi H-L, Latva-Kala K, Koski P (1997) Polyethyleneimine is an effective permeabilizer of Gram-negative bacteria. Microbiology 143:3193–3199

    Article  PubMed  CAS  Google Scholar 

  24. Jungbauer A, Kaar W, Schlegl R (2004) Folding and refolding of proteins in chromatographic beds. Curr Opin Biotechnol 15:487–494

    Article  PubMed  CAS  Google Scholar 

  25. Langenhof M, Leong SSJ, Pattenden LK, Middelberg APJ (2005) Controlled oxidative protein refolding using an ion-exchange column. J Chromatogr A 1069:195–201

    Article  PubMed  CAS  Google Scholar 

  26. Lee SY (1996) High cell density culture of Escherichia coli. Trends Biotechnol 14:98–105

    Article  PubMed  CAS  Google Scholar 

  27. Lee CT, Morreale G, Middelberg APJ (2004) Combined in-fermenter extraction and cross-flow microfiltration for improved inclusion body processing. Biotechnol Bioeng 85:103–113

    Article  PubMed  CAS  Google Scholar 

  28. Lilie H, Schwarz E, Rudolph R (1998) Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol 9:497–501

    Article  PubMed  CAS  Google Scholar 

  29. Ling Y, Wong HH, Thomas CJ, Williams DR, Middelberg APJ (1997) Pilot-scale extraction of PHB from recombinant E. coli by homogenization and centrifugation. Bioseparation 7:9–15

    Article  PubMed  CAS  Google Scholar 

  30. Lodish H, Baltimore D, Berk A, Zipursky SL, Matsudaira P, Darnell J (1995) Molecular cell biology, 3rd edn. Scientific American Books, Inc. p 145, Table 5.1

  31. Maachupalli-Reddy J, Kelley BD, Clark ED (1997) Effect of inclusion body contaminants on the oxidative renaturation of hen egg white lysozyme. Biotechnol Prog 13:144–150

    Article  PubMed  CAS  Google Scholar 

  32. Marston FAO, Hartley DL (1990) Solubilisation of protein aggregates. Methods Enzymol 182:264

    Article  PubMed  CAS  Google Scholar 

  33. Middelberg APJ (2002) Preparative protein refolding. Trends Biotechnol 20:437–443

    Article  CAS  Google Scholar 

  34. Middelberg APJ, O’Neill BK (1998) Harvesting recombinant protein inclusion bodies. In: Subramaniam G (ed) Bioseparation and bioprocessing: a handbook. Wiley-VCH, New York, pp 81–106

    Chapter  Google Scholar 

  35. Petrides D, Cooney CL, Evans LB (1989) Bioprocess simulation: an integrated approach to process development. Comput Chem Eng 13:553–561

    Article  CAS  Google Scholar 

  36. Schuler ML, Kargi F (1992) Bioprocess engineering: basic concepts. Prentice-Hall, Englewood Cliffs, pp 395–430

    Google Scholar 

  37. Shepard SR, Boyd GA, Schrimsher JL (2001) Routine manufacture of recombinant proteins using expanded bed adsorption chromatography. Bioseparation 10:51–56

    Article  PubMed  CAS  Google Scholar 

  38. Speed MA, Wang DIC, King J (1996) Specific aggregation of partially folded polypeptide chains: the molecular basis of inclusion body composition. Nat Biotechnol 14:1283

    Article  PubMed  CAS  Google Scholar 

  39. Valax P, Georgiou G (1993) Molecular characterisation of β-lactamase inclusion bodies produced in Escherichia coli. 1. Composition. Biotechnol Prog 9:539

    Article  PubMed  CAS  Google Scholar 

  40. Vallejo LF, Rinas U (2004) Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact 3:11

    Article  PubMed  CAS  Google Scholar 

  41. Wong HH, O’Neill BK, Middelberg APJ (1997a) Cumulative sedimentation analysis of Escherichia coli debris size. Biotechnol Bioeng 55:556–564

    Article  CAS  Google Scholar 

  42. Wong HH, O’Neill BK, Middelberg APJ (1997b) A mathematical model for Escherichia coli debris size reduction during high pressure homogenization based on grinding theory. Chem Eng Sci 52:2883–2890

    Article  CAS  Google Scholar 

  43. Zhang Y, Qu XM, Lu JF, Yang SL (2000) Purification of recombinant GM-CSF/IL-3 fusion protein. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 32:235–238

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. Choe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, G.H., Cooney, D., Middelberg, A.P.J. et al. The economics of inclusion body processing. Bioprocess Biosyst Eng 29, 73–90 (2006). https://doi.org/10.1007/s00449-006-0047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0047-2

Keywords

Navigation