Skip to main content
Log in

Bioreactor cultivation of three-dimensional cartilage-carrier-constructs

  • Original papers
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A flow-chamber bioreactor was designed for generation of three-dimensional cartilage-carrier-constructs. A specific attribute of the flow-chamber is a very thin medium layer for improved oxygen supply and a counter current flow of medium and gas. Three-dimensional cartilage-carrier-constructs were produced according to a standard protocol from chondrocytes of an adult mini-pig. The final step of this protocol was performed either in the bioreactor or in 12-well plates. The bioreactor experiments showed a significantly higher matrix thickness but a lower ratio of glycosaminoglycan to DNA. For both culture methods the constructs contained a high amount of collagen II. Appearance of the cartilage obtained in the bioreactor seemed to be closer to native cartilage with respect to distribution of the cells within the matrix, smoothness of the surface etc. All results considered the flow-chamber bioreactor is a very useful tool for generation of three dimensional cartilage-carrier constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    CAS  Google Scholar 

  2. Lysaght MJ, Loughlin JA (2000) Demographic scope and economic magnitude of contemporary organ replacement therapies. ASAIO J 46:515

    CAS  Google Scholar 

  3. Minuth WW, Strehl R, Schumacher K (2005) Tissue engineering—from cell biology to artificial organs. Wiley-VCH, Weinheim

    Google Scholar 

  4. Freed LE, Martin I, Vunjak-Novakovic G (1999) Frontiers in tissue engineering. In: vitro modulation of chondrogenesis. Clin Orthop 367(Suppl):46–58

    Google Scholar 

  5. Buschmann MD, Gluzband YA, Grodzinsky AJ, Kimura JH, Hunziker EB (1992) Chondrocytes in agarose culture synthesize a mechanically functional extrazellular matrix. J Orthop Res 10:745–758

    Article  CAS  Google Scholar 

  6. Park SS, Ward MJ (1995) Tissue-engineered cartilage for implantation and grafting. Facial Plastic Surg 11:278–283

    CAS  Google Scholar 

  7. Sittinger M, Schultz O, Keyser G, Minuth WW, Burmester GR (1997) Artificial tissues in perfusion culture. Int J Artif Org 20:57–62

    CAS  Google Scholar 

  8. Petersen JP, Rücker A, von Stechow D, Adamietz P, Pörtner R, Rueger JM, Meenen NM (2003) Present and future therapies of articular cartilage defects. Eur J Trauma 1:1–10

    Google Scholar 

  9. Nagel-Heyer S, Goepfert Ch, Morlock MM, Pörtner R (2005) Relationship between gross morphological and biochemical data of tissue engineered cartilage-carrier-constructs. Biotechnol Lett 27:187–192

    Article  CAS  Google Scholar 

  10. Nehring D, Adamietz P, Meenen NM, Pörtner R (1999) Perfusion cultures and modelling of oxygen uptake with three-dimensional chondrocyte pellets. Biotechnol Techn 13:701–706

    Article  CAS  Google Scholar 

  11. Minuth WW, Stöckl G, Kloth S, Dermietzel R (1992) Construction of an apparatus for perfusion cell cultures which enables in vitro experiments under organotypic conditions. Eur J Cell Biol 57:132–137

    CAS  Google Scholar 

  12. Yaeger PC, Masi TL, Buck de Ortiz JL, Binette F, Tubo R, MyPherson JM (1997) Synergistic action of transforming growth factor-β and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp Cell Res 237:318–325

    Article  CAS  Google Scholar 

  13. Janssen R, Nagel-Heyer S, Goepfert CH, Pörtner R, Toykan D, Krummhauer O, Morlock MM, Adamietz P, Meenen NM, Kriven WM, Kim D-K, Tampieri A, Celotti G (2004) Calcium phosphate ceramics as substrate for cartilage cultivation. Ceramic Eng Sci Proc 25(4):523–528

    CAS  Google Scholar 

  14. Scherer K, Schunke M, Sellckau R, Hassenpflug J, Kurz B (2004) The influence of oxygen and hydrostatic pressure on articular chondrocytes and adherent bone marrow cells in vitro. Biorheology 41:323–333

    CAS  Google Scholar 

  15. Brunk CF, Jones KC, James TW (1979) Assay for Nanogram Quantities of DNA in Cellular Homogenates. Anal Biochem 92:497–500

    Article  CAS  Google Scholar 

  16. Junqueira LC, Carneiro J (1991) Histologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Malda J, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2003) Cartilage tissue engineering: controversy in the effect of oxygen. Crit Rev Biotechnol 23:175–194

    CAS  Google Scholar 

  18. Malda J, Rouwkema J, Martens DE, Le Comte EP, Kooy FK, Tramper J, van Blitterswijk CA, Riesle J (2004) Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling. Biotechnol Bioeng 86:9–18

    Article  CAS  Google Scholar 

  19. Ooms EM, Wolke JGC, van der Waerden JPCM, Jansen JA (2002) Trabecular bone response to injectable calcium phosphate (Ca–P) cement. J Biomed Mater Res 61:9–18

    Article  CAS  Google Scholar 

  20. Ooms EM, Wolke JGC, van de Heuvel MT, Jeschke B, Jansen JA (2003) Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterial 24:989–1000

    CAS  Google Scholar 

  21. Darling EM, Athanasiou KA (2003) Articular cartilage bioprocesses and bioreactors. Tissue Eng 9:9–26

    CAS  Google Scholar 

  22. Minuth WW, Strehl R, Schumacher K (2005) Tissue engineering—from cell biology to artificial organs. Wiley-VCH, Weinheim

    Google Scholar 

  23. Shiragami N, Unno H (1994) Effect of shear stress on activity of cellular enzyme in animal cell. Bioproc Eng 10:43–45

    CAS  Google Scholar 

  24. Brandt KD, Doherty M, Lohmander LS (1998) Composition and structure of articular cartilage. In: Osteoarthritis. Oxford University Press, New York, pp 110–111

  25. Waldman SD, Grynpas MD, Pilliar RM, Kandel RA (2002) Characterization of cartilaginous tissue formed on calcium polyphosphate substrate in vitro. J Biomed Mat Res 62:323–330

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support of Biomet Deutschland GmbH, Darmstadt, Germany under the BMBF-grant No. 03N4012 is gratefully acknowledged. Furthermore we thank Katharina Braun, Ditte Siemesgelüss for their excellent technical support as well as Prof. Dr. Michael Morlock for his advice in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Pörtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel-Heyer, S., Goepfert, C., Feyerabend, F. et al. Bioreactor cultivation of three-dimensional cartilage-carrier-constructs. Bioprocess Biosyst Eng 27, 273–280 (2005). https://doi.org/10.1007/s00449-005-0419-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-005-0419-z

Keywords