Advertisement

Bioprocess and Biosystems Engineering

, Volume 27, Issue 4, pp 263–271 | Cite as

Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors 2. Propionibacterium shermanii broths

  • Anca-Irina Galaction
  • Dan CascavalEmail author
  • Marius Turnea
  • Elena Folescu
Original papers

Abstract

The previous works on simulated broths are continued and developed for Propionibacterium shermanii broths. The obtained results indicated the considerable increase of kLa in presence of n-dodecane as oxygen-vector and the existence of a certain value of hydrocarbon concentration that corresponds to the maximum mass transfer rate of oxygen. The magnitude of the positive effect of the oxygen-vector strongly depends on operational conditions of the bioreactor, on broth characteristics and on P. shermanii concentration.

Keywords

Stirred bioreactor Oxygen-vector n-Dodecane kLa Propionibacterium shermanii 

List of symbols

CX

Biomass concentration, g/l d.w.

d

Stirrer diameter, mm

Da

Volumetric air flow rate, m3/s

H

Bioreactor height, mm

kLa

Oxygen mass transfer coefficient, s−1

N

Impeller rotation speed, rpm

NP

Power number

P

Power consumption for mixing of non-aerated broths, W

Pa

Power consumption for mixing of aerated broths, W

(Pa/V)

Specific power input, W/m3

Re

Reynolds number

vS

Superficial air velocity, m/s

V

Volume of medium, m3

w

Impeller blade height, mm

α, β, γ, δ

Parameters of empirical correlation (1)

ϕ

Volumetric fraction of oxygen-vector

ρ

Density, kg/m3

References

  1. 1.
    MacLean GT (1977) Oxygen diffusion rates in organic fermentation broths. Proc Biochem 12:22–28Google Scholar
  2. 2.
    Rols JL, Goma G (1989) Enhancement of oxygen transfer rates in fermentation using oxygen-vectors. Biotechnol Adv 7:1–8CrossRefGoogle Scholar
  3. 3.
    Rols JL, Condoret JS, Fonade C, Goma G (1990) Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol Bioeng 35:427–435CrossRefGoogle Scholar
  4. 4.
    Ho CS, Ju LK, Baddour RF (1990) Enhancing penicillin fermentations by increased oxygen solubility through the addition of n-hexadecane. Biotechnol Bioeng 36:1110–1118CrossRefGoogle Scholar
  5. 5.
    Galaction AI, Cascaval D, Oniscu C, Turnea M (2004) Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors. 1.Simulated fermentation broths. Bioprocess Biosyst Eng 26: 231–238CrossRefGoogle Scholar
  6. 6.
    Mimura A, Kawano T, Kodaina R (1969) Air solubility in hydrocarbons. J Ferm Technol 47:229–236Google Scholar
  7. 7.
    Yoshida F, Yamane T, Miyamoto M (1970) The increase oxygen diffusion rates in broths adding organic substrates. Ind Eng Chem Proc Des Dev 9:570–577Google Scholar
  8. 8.
    Yamane T, Yoshida F (1974) Oxygen transfer rates in fermentations on liquid organic substrates. J Ferm Technol 52:445–454Google Scholar
  9. 9.
    Mattiasson B, Adlercreutz P (1983) Enzymatic peptide synthesis in organic media. Ann NY Acad Sci 413:545–553Google Scholar
  10. 10.
    McMillan JD, Wang DIC (1987) Enhanced oxygen transfer using oil-in-water dispersions. Ann NY Acad Sci 506:569–574Google Scholar
  11. 11.
    Mattiasson B, Adlercreutz P (1987) Organic solvents for bioorganic synthesis. Trends Biotechnol 5:250–258CrossRefGoogle Scholar
  12. 12.
    Battino R, Rettich TR, Tominaga T (1983) The solubility of oxygen and ozone in liquids. J Phys Chem Ref Data 12:163–169Google Scholar
  13. 13.
    Wilhelm E, Battino R (1986) The solubility of gases in liquids. 17. The solubility of gases in carbon tetrachloride. Chem Rev 73:214–220Google Scholar
  14. 14.
    Battino R, Johnson SA, Clever HL (1986) The solubility of nitrogen and air in liquids. Solubility Data Ser 7:414–420Google Scholar
  15. 15.
    Ju LK, Ho CS (1989) Oxygen diffusion coefficient and solubility in n-hexadecane. Biotechnol Bioeng 34:1221–1230CrossRefGoogle Scholar
  16. 16.
    Linek V, Benes P (1976) Analysis of gas absorption in emulsions of n-alkanes in water. Chem Eng Sci 31:1037–1043Google Scholar
  17. 17.
    Oniscu C, Cascaval D (2002) Biochemical engineering and biotechnology. 1. Biotechnological Processes Engineering, InterGlobal IasiGoogle Scholar
  18. 18.
    Galaction AI, Cascaval D, Oniscu C, Turnea M (2004) Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeasts and fungus broths. Biochem Eng J 20:85–94Google Scholar
  19. 19.
    Moo-Young M, Cooney ChL, Humphrey AE (eds) (1985) Comprehensive biotechnology (vol 2). Pergamon Press, OxfordGoogle Scholar
  20. 20.
    Ozbek B, Gayik S (2001) The studies on the oxygen mass transfer coefficient in a bioreactor. Proc Biochem 36:729–736Google Scholar
  21. 21.
    Ho CS, Olshue JY (eds.) (1987) Biotechnology processes scale-up and mixing. American Institute of Chemical Engineering, New YorkGoogle Scholar
  22. 22.
    van’t Riet K, Tramper J (1991) Basic Bioreactor Design. M. Dekker Inc., New York.Google Scholar
  23. 23.
    Montes FY, Catalan J, Galan M (1999) Prediction of k L a in yeast broths. Proc Biochem 34:549–561CrossRefGoogle Scholar
  24. 24.
    Hughmark GA (1980) Power requirements and interfacial area in gas-liquid turbine agitated systems. Ind Eng Chem Proc Des Dev 10:638–641Google Scholar
  25. 25.
    Galaction AI, Oniscu C, Cascaval D (2003) Studies on oxygen mass transfer in stirred bioreactors. 2.suspensions of bacteria, yeasts and fungus. Chem Ind 57:276–287Google Scholar
  26. 26.
    Christi Y, Jauregui-Haza UJ (2002) Oxygen transfer and mixing in mechanically agitated airlift bioreactors. Biochem Eng J 10:143–153Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Anca-Irina Galaction
    • 1
  • Dan Cascaval
    • 2
    Email author
  • Marius Turnea
    • 1
  • Elena Folescu
    • 2
  1. 1.Faculty of Medical Bioengineering, Department of BiotechnologyUniversity of Medicine and PharmacyIasiRomania
  2. 2.Faculty of Industrial Chemistry, Department of Biochemical EngineeringTechnical University “Gh. Asachi” of IasiIasiRomania

Personalised recommendations