Bioprocess and Biosystems Engineering

, Volume 27, Issue 4, pp 263–271 | Cite as

Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors 2. Propionibacterium shermanii broths

  • Anca-Irina Galaction
  • Dan CascavalEmail author
  • Marius Turnea
  • Elena Folescu
Original papers


The previous works on simulated broths are continued and developed for Propionibacterium shermanii broths. The obtained results indicated the considerable increase of kLa in presence of n-dodecane as oxygen-vector and the existence of a certain value of hydrocarbon concentration that corresponds to the maximum mass transfer rate of oxygen. The magnitude of the positive effect of the oxygen-vector strongly depends on operational conditions of the bioreactor, on broth characteristics and on P. shermanii concentration.


Stirred bioreactor Oxygen-vector n-Dodecane kLa Propionibacterium shermanii 

List of symbols


Biomass concentration, g/l d.w.


Stirrer diameter, mm


Volumetric air flow rate, m3/s


Bioreactor height, mm


Oxygen mass transfer coefficient, s−1


Impeller rotation speed, rpm


Power number


Power consumption for mixing of non-aerated broths, W


Power consumption for mixing of aerated broths, W


Specific power input, W/m3


Reynolds number


Superficial air velocity, m/s


Volume of medium, m3


Impeller blade height, mm

α, β, γ, δ

Parameters of empirical correlation (1)


Volumetric fraction of oxygen-vector


Density, kg/m3


  1. 1.
    MacLean GT (1977) Oxygen diffusion rates in organic fermentation broths. Proc Biochem 12:22–28Google Scholar
  2. 2.
    Rols JL, Goma G (1989) Enhancement of oxygen transfer rates in fermentation using oxygen-vectors. Biotechnol Adv 7:1–8CrossRefGoogle Scholar
  3. 3.
    Rols JL, Condoret JS, Fonade C, Goma G (1990) Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol Bioeng 35:427–435CrossRefGoogle Scholar
  4. 4.
    Ho CS, Ju LK, Baddour RF (1990) Enhancing penicillin fermentations by increased oxygen solubility through the addition of n-hexadecane. Biotechnol Bioeng 36:1110–1118CrossRefGoogle Scholar
  5. 5.
    Galaction AI, Cascaval D, Oniscu C, Turnea M (2004) Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors. 1.Simulated fermentation broths. Bioprocess Biosyst Eng 26: 231–238CrossRefGoogle Scholar
  6. 6.
    Mimura A, Kawano T, Kodaina R (1969) Air solubility in hydrocarbons. J Ferm Technol 47:229–236Google Scholar
  7. 7.
    Yoshida F, Yamane T, Miyamoto M (1970) The increase oxygen diffusion rates in broths adding organic substrates. Ind Eng Chem Proc Des Dev 9:570–577Google Scholar
  8. 8.
    Yamane T, Yoshida F (1974) Oxygen transfer rates in fermentations on liquid organic substrates. J Ferm Technol 52:445–454Google Scholar
  9. 9.
    Mattiasson B, Adlercreutz P (1983) Enzymatic peptide synthesis in organic media. Ann NY Acad Sci 413:545–553Google Scholar
  10. 10.
    McMillan JD, Wang DIC (1987) Enhanced oxygen transfer using oil-in-water dispersions. Ann NY Acad Sci 506:569–574Google Scholar
  11. 11.
    Mattiasson B, Adlercreutz P (1987) Organic solvents for bioorganic synthesis. Trends Biotechnol 5:250–258CrossRefGoogle Scholar
  12. 12.
    Battino R, Rettich TR, Tominaga T (1983) The solubility of oxygen and ozone in liquids. J Phys Chem Ref Data 12:163–169Google Scholar
  13. 13.
    Wilhelm E, Battino R (1986) The solubility of gases in liquids. 17. The solubility of gases in carbon tetrachloride. Chem Rev 73:214–220Google Scholar
  14. 14.
    Battino R, Johnson SA, Clever HL (1986) The solubility of nitrogen and air in liquids. Solubility Data Ser 7:414–420Google Scholar
  15. 15.
    Ju LK, Ho CS (1989) Oxygen diffusion coefficient and solubility in n-hexadecane. Biotechnol Bioeng 34:1221–1230CrossRefGoogle Scholar
  16. 16.
    Linek V, Benes P (1976) Analysis of gas absorption in emulsions of n-alkanes in water. Chem Eng Sci 31:1037–1043Google Scholar
  17. 17.
    Oniscu C, Cascaval D (2002) Biochemical engineering and biotechnology. 1. Biotechnological Processes Engineering, InterGlobal IasiGoogle Scholar
  18. 18.
    Galaction AI, Cascaval D, Oniscu C, Turnea M (2004) Prediction of oxygen mass transfer coefficients in stirred bioreactors for bacteria, yeasts and fungus broths. Biochem Eng J 20:85–94Google Scholar
  19. 19.
    Moo-Young M, Cooney ChL, Humphrey AE (eds) (1985) Comprehensive biotechnology (vol 2). Pergamon Press, OxfordGoogle Scholar
  20. 20.
    Ozbek B, Gayik S (2001) The studies on the oxygen mass transfer coefficient in a bioreactor. Proc Biochem 36:729–736Google Scholar
  21. 21.
    Ho CS, Olshue JY (eds.) (1987) Biotechnology processes scale-up and mixing. American Institute of Chemical Engineering, New YorkGoogle Scholar
  22. 22.
    van’t Riet K, Tramper J (1991) Basic Bioreactor Design. M. Dekker Inc., New York.Google Scholar
  23. 23.
    Montes FY, Catalan J, Galan M (1999) Prediction of k L a in yeast broths. Proc Biochem 34:549–561CrossRefGoogle Scholar
  24. 24.
    Hughmark GA (1980) Power requirements and interfacial area in gas-liquid turbine agitated systems. Ind Eng Chem Proc Des Dev 10:638–641Google Scholar
  25. 25.
    Galaction AI, Oniscu C, Cascaval D (2003) Studies on oxygen mass transfer in stirred bioreactors. 2.suspensions of bacteria, yeasts and fungus. Chem Ind 57:276–287Google Scholar
  26. 26.
    Christi Y, Jauregui-Haza UJ (2002) Oxygen transfer and mixing in mechanically agitated airlift bioreactors. Biochem Eng J 10:143–153Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Anca-Irina Galaction
    • 1
  • Dan Cascaval
    • 2
    Email author
  • Marius Turnea
    • 1
  • Elena Folescu
    • 2
  1. 1.Faculty of Medical Bioengineering, Department of BiotechnologyUniversity of Medicine and PharmacyIasiRomania
  2. 2.Faculty of Industrial Chemistry, Department of Biochemical EngineeringTechnical University “Gh. Asachi” of IasiIasiRomania

Personalised recommendations