Direct fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus

Abstract

The biochemical kinetic of direct fermentation for lactic acid production by fungal species of Rhizopus arrhizus 3,6017 and Rhizopus oryzae 2,062 was studied with respect to growth pH, temperature and substrate. The direct fermentation was characterized by starch hydrolysis, accumulation of reducing sugar, and production of lactic acid and fungal biomass. Starch hydrolysis, reducing sugar accumulation, biomass formation and lactic acid production were affected with the variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30°C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.87–0.97 g/g starch associated with 1.5–2.0 g/l fungal biomass produced in 36 h fermentation. R. arrhizus 3,6017 had a higher capacity to produce lactic acid, while R. oryzae 2,062 produced more fungal biomass under similar conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Datta R, Tsai SP, Bonsignor P, Moon S, Frank J (1995) Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol Rev 16:221–231

    CAS  Google Scholar 

  2. 2.

    Hofvendahl K, Akerberg C, Zacchi G (1999) Simultaneous enzymatic wheat starch saccharification and fermentation to lactic acid by Lactococcus lactis. Appl Microbiol Biotechnol 52:163–169

    Article  CAS  Google Scholar 

  3. 3.

    Khalaf SA (2001) Lactic acid production by interspecific hybrids of Rhizopus strains from potato processing peel waste. Egyptian J Microbiol 36(1):89–102

    CAS  Google Scholar 

  4. 4.

    Akerberg C, Hofvendahl K, Zacchi G, Hahn-Hagerdal B (1998) Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp lactis ATCC 19435 in whole-wheat flour. Appl Microbiol Biotechnol 49:682–690

    CAS  Google Scholar 

  5. 5.

    Hofvendahl K, Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microbial Technol 26:87–107

    CAS  Google Scholar 

  6. 6.

    Yin P, Nishina N, Kosakai Y, Yahiro K, Park Y, Okabe M (1997) Enhanced production of L(+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor. J Ferment Bioeng 84:249–253

    CAS  Google Scholar 

  7. 7.

    Tsao GT, Cao NJ, Du J, Gong CS (1999) Production of multifunctional organic acids from renewable resources. Adv Biochem Eng Biotechnol 65:245–277

    Google Scholar 

  8. 8.

    Richter K, Berthold C (1998) Biotechnological conversion of sugar and starchy crops into lactic acid. J Agri Eng Res 71:181–191

    Google Scholar 

  9. 9.

    Anuradha R, Suresh AK, Venkatesh KV (1999) Simultaneous saccharification and fermentation of starch to lactic acid. Process Biochem 35:367–375

    Article  CAS  Google Scholar 

  10. 10.

    Aristidous A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Google Scholar 

  11. 11.

    Huang LP, Jin B, Lant P, Zhou JT (2003) Biotechnological production of lactic acid integrated with potato wastewater treatment by Rhisopus arrhizus. J Chem Technol Biotechnol 78:899–906

    CAS  Google Scholar 

  12. 12.

    Rivas B, Moldes AB, Dominguez JM, Parajo JC (2004) Lactic acid production from corn cobs by simultaneous saccharification and fermentation: a mathematical interpretation. Enzyme and Microbial Technol 34:627–634

    CAS  Google Scholar 

  13. 13.

    Wee YJ, Kim JN, Yun JS, Ryu HW (2004) Utilization of sugar molasses for economical L(+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzyme Microbial Technol 35:568–573

    CAS  Google Scholar 

  14. 14.

    Naveena BJ, Altaf M, Bhadrayya K, Madhavendra SS, Reddy G (2005) Direct fermentation of starch to L(+) lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimisation using RSM. Process Biochem 40:681–690

    Article  CAS  Google Scholar 

  15. 15.

    Naveena BJ, Altaf M, Bhadriah K, Reddy G (2005) Selection of medium components by Plackett Burman design for production of L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresource Technol 96:485–490

    Article  CAS  Google Scholar 

  16. 16.

    Vishnu C, Seenayya G, Reddy G (2000) Direct conversion of starch to L(+) lactic acid by amylase producing Lactobacillus amylophilus GV6. Bioprocess Eng 23:155–158

    Article  CAS  Google Scholar 

  17. 17.

    Vishnu C, Seenayya G, Reddy G (2002) Direct fermentation of various pure and crude starchy substrates to L (+) lactic acid using Lactobacillus amylophilus GV6. World J Microbiol Biotechnol 18:429–433

    Article  CAS  Google Scholar 

  18. 18.

    M de Vos Willem and Hugenholtz J (2004) Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends BioTechnol 22(2):72–79

    CAS  Google Scholar 

  19. 19.

    Ayad EHE, Nashat S, EI-Sadek N, Metwaly H, EI-Soda M (2004) Selection of wild lactic acid bacteria isolated from traditional Egyptian dairy products according to production and technological criteria. Food Microbiol 21:715–725

    Google Scholar 

  20. 20.

    Soccol CR, Stonoga VI, Raimbault M (1994) Production of L-lactic acid by Rhizopus species. World J Microbiol Biotechnol 10:433–435

    Article  CAS  Google Scholar 

  21. 21.

    Rosenberg M, Kristofikova L (1995) Physiological restriction of the L-lactic acid production by Rhizopus arrhizus. Acta Biotechnol 15:367–374

    CAS  Google Scholar 

  22. 22.

    Yang CW, Lu ZJ, Tsao GT (1995) Lactic acid production by pellet-form Rhizopus oryzae in a submerged system. Appl Biochem Biotechnol 51–52:57–71

    Google Scholar 

  23. 23.

    Oda Y, Saito K, Yamauchi H, Mori M (2002) Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae. Current Microbiol 45:1–4

    CAS  Google Scholar 

  24. 24.

    Hang YD, Hamamci H, Woodams E (1989) Production of L(+)-lactic acid by Rhizopus oryzae immobilized in calcium alginate gels. Biotechnol Lett 11:119–120

    CAS  Google Scholar 

  25. 25.

    Yu RC, Hang YD (1989) Kinetics of direct fermentation of agricultural commodities to L(+)-lactic acid by Rhizopus oryzae. Biotechnol Lett 11:597–600

    Article  CAS  Google Scholar 

  26. 26.

    Zhou Y, Dominguez JM, Cao N, Du J, Tsao GT (1999) Optimization of L- Lactic acid production from glucose by Rhizopus oryzae ATCC 52311. Appl Biochem Biotechnol 77–79:401–407

    Google Scholar 

  27. 27.

    Hakki EE, Akkaya MS (2001) RT-PCR amplification of a Rhizopus oryzae lactate dehydrogenase gene fragment. Enzyme Microbiol Technol 28:259–264

    Article  CAS  Google Scholar 

  28. 28.

    Philippidis G, Hatzis C (1997) Biochemical engineering analysis of critical process factors in the biomass-to0ethanol technology. BioTechnol Progr 13:222–231

    CAS  Google Scholar 

  29. 29.

    Jin B, van Leeuwen J, Patel B, Doelle H, Yu Q (1999) Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater. Process Biochem 34:59–65

    CAS  Google Scholar 

  30. 30.

    Jin B, Yu Q, van Leeuwen J (2001) A bioprocessing mode for fungal biomass protein production and wastewater treatment using external air-lift bioreactor. J Chem Technol Biotechnol 76:1041–1048

    Article  CAS  Google Scholar 

  31. 31.

    Moldes AB, Alonso JL, Parajo JC (2001) Strategies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation. J Chem Technol Biotechnol 76:279–284

    Article  CAS  Google Scholar 

  32. 32.

    Takagi M, Abe S, Suzuki S, Emert GH, Yata N (1977) A method for production of alcohol directly from cellulose using cellulase and yeast. In: Proceedings of the bioconversion symposium, IIT, Delhi pp 551–571

  33. 33.

    Bulut S, Elibol M, Ozer D (2004) Effect of different carbon sources on L(+)-lactic acid production by Rhizopus oryzae. Biochem Eng Journal 21:33–37

    CAS  Google Scholar 

  34. 34.

    Rao MS, Pintado J, Stevens WF, Guyot JP (2004) Kinetic growth parameters of different amylolytic and non-amylolytic Lactobacillus strains under various salt and pH conditions. Bioresource Technol 94:331–337

    Article  CAS  Google Scholar 

  35. 35.

    Stenberg K, Galbe M, Zacchi G (2000) The influence of lactic acid formation on the simultaneous saccharification and fermentation of softwood to ethanol. Enzyme and Microbial Technol 26:71–79

    CAS  Google Scholar 

  36. 36.

    Tomas LC, Chamberlain GJ (1980) Colorimetric chemical analytical methods. Tintometer Ltd, Salisbary

    Google Scholar 

  37. 37.

    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    CAS  Google Scholar 

  38. 38.

    Tsai SP, Moon SH (1998) An integrated bioconversion process for production of L-lactic acid from starchy potato feed stocks. Appl Biochem Biotechnol 70–72:417–428

    Google Scholar 

  39. 39.

    Iyer PV, Lee YY (1999) Product inhibition in simultaneous saccharification and fermentation of cellulose into lactic acid. Biotechnol Lett 21:371–373

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly funded by an Early Career Research grant, The University of Queensland, Australia, SRF for ROCS, SEM of China and National Science Foundation of China (50276008). We would like to thank Freer Foods Pty Ltd, Brisbane, Australia for supplying starch stream samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li Ping Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, L.P., Jin, B. & Lant, P. Direct fermentation of potato starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus . Bioprocess Biosyst Eng 27, 229–238 (2005). https://doi.org/10.1007/s00449-005-0398-0

Download citation

Keywords

  • Fermentation
  • Lactic acid
  • Reducing sugar
  • Starch hydrolysis
  • Fungal biomass