Skip to main content
Log in

Effects of glucose limitation on biomass and spiramycin production by Streptomyces ambofaciens

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Spiramycin production by Streptomyces ambofaciens Sp181110 with glucose as the carbon source was studied under a controlled nutritional environment. In a batch culture, the glucose excess after ammonium depletion led to pyruvate and α-ketoglutarate accumulation. 85 mg/l of spiramycin were produced in less than 70 h during the stationary and maintenance phase on these acids after glucose exhaustion. Fed-batch strategy was designed to study spiramycin production without by-product formation and glucose accumulation. In these conditions, up to 150 mg/l were produced in less than 80 h during the stationary phase on glucose. The antibiotic titre was found independent of the glucose feeding under carbon limitation and the importance of putative intracellular reserves formed after nutrient exhaustion was suggested. Besides, spiramycin production was not inhibited by the limiting flux of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thomson CJ, Power E, Ruebsamen-Waigmann H, Labischinski H (2004) Curr Opin Microbiol 7(5):445–450

    Article  Google Scholar 

  2. Demain AL (2000) Biotechnol Adv 18(6):499–514

    Article  CAS  Google Scholar 

  3. Pinnert-Sindico S (1954) Ann Inst Pasteur (Paris) 87:702–707

    CAS  Google Scholar 

  4. Omura S, Takeshima H, Nakagawa A, Miyazawa J, Piriou F, Lukacs G (1977) Biochemistry 16(13):2860–2866

    Article  CAS  Google Scholar 

  5. Blondelet-Rouault MH, Dominguez H, Darbon-Rongere E, Gerbaud C, Gondran A, Karray F, Lacroix P, Oestreicher-Mermet-Bouvier N, Pernodet JL, Tuphile K (2004) PCT Patent Application WO2004/033689 A2

  6. Tang L, Zhang YX, Hutchinson CR (1994) J Bacteriol 176(19):6107–6119

    CAS  Google Scholar 

  7. Omura S, Kitao C, Hamada H, Ikeda H (1979) Chem Pharm Bull (Tokyo) 27(1):176–182

    CAS  Google Scholar 

  8. Jin ZH, Cen PL (2004) J Zhejiang Univ Sci 5(6):689–695

    Article  CAS  Google Scholar 

  9. Lounes A, Lebrihi A, Benslimane C, Lefebvre G, Germain P (1996) Appl Microbiol Biotechnol 45(1–2):204–211

    CAS  Google Scholar 

  10. Untrau-Taghian S, Lebrihi A, Germain P, Lefebvre G (1995) Can J Microbiol 41:157–162

    Article  CAS  Google Scholar 

  11. Lounes A, Lebrihi A, Benslimane C, Lefebvre G, Germain P (1995) Curr Microbiol 31(5):304–311

    Article  CAS  Google Scholar 

  12. Khaoua S, Lebrihi A, Laakel M, Schneider F, Germain P, Lefebvre G (1992) Appl Microbiol Biotechnol 36(6):763–767

    Article  CAS  Google Scholar 

  13. Lounes A, Lebrihi A, Benslimane C, Lefebvre G, Germain P (1996) Process Biochem 31(1):13–20

    Article  CAS  Google Scholar 

  14. Lebrihi A, Lamsaif D, Lefebvre G, Germain P (1992) Appl Microbiol Biotechnol 37(3):382–387

    Article  CAS  Google Scholar 

  15. Lounes A, Lebrihi A, Benslimane C, Lefebvre G, Germain P (1995) Can J Microbiol 41(9):800–808

    CAS  Google Scholar 

  16. Laakel M, Lebrihi A, Khaoua S, Schneider F, Lefebvre G, Germain P (1994) Microbiology 140:1451–1456

    Article  CAS  Google Scholar 

  17. Untrau S, Lebrihi A, Lefebvre G, Germain P (1994) Curr Microbiol 28:111–118

    Article  CAS  Google Scholar 

  18. Untrau S, Lebrihi A, Germain P, Lefebvre G (1992) Curr Microbiol 25:313–318

    Article  CAS  Google Scholar 

  19. Richardson MA, Kuhstoss S, Huber ML, Ford L, Godfrey O, Turner JR, Rao RN (1990) J Bacteriol 172(7):3790–3798

    CAS  Google Scholar 

  20. Geistlich M, Losick R, Turner JR, Rao RN (1992) Mol Microbiol 6(14):2019–2029

    Article  CAS  Google Scholar 

  21. Pernodet JL, Alegre MT, Blondelet-Rouault MH, Guerineau M (1993) J Gen Microbiol 139(Pt 5):1003–1011

    CAS  Google Scholar 

  22. Martin JF, Demain AL (1980) Microbiol Rev 44(2):230–251

    CAS  Google Scholar 

  23. Egli T, Fiechter A (1981) J Gen Microbiol 123:365–369

    CAS  Google Scholar 

  24. Miller GL (1959) Anal Chem 31:426–429

    Article  CAS  Google Scholar 

  25. Kuzdzal-Savoie S, Lebon F (1971) Tech lait 690:12–13

    Google Scholar 

  26. van der Heijden R, Heijnen J, Hellinga C, Romein B, Luyben K (1994) Biotechnol Bioeng 43:3–20

    Article  Google Scholar 

  27. Roels JA (1983) Elsevier Biomedical Press, Amsterdam

  28. Hodgson DA (2000) Adv Microb Physiol 42:47–238

    CAS  Google Scholar 

  29. Olukoshi ER, Packter NM (1994) Microbiology 140(4):931–943

    CAS  Google Scholar 

  30. Schauner C, Dary A, Lebrihi A, Leblond P, Decaris B, Germain P (1999) Appl Environ Microbiol 65(6):2730–2737

    CAS  Google Scholar 

  31. Pons MN, Drouin JF, Louvel L, Vanhoutte B, Vivier H, Germain P (1998) J Biotechnol 65(1):3–14

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Sanofi-Aventis, Vitry sur Seine, France

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Uribelarrea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombié, V., Bideaux, C., Goma, G. et al. Effects of glucose limitation on biomass and spiramycin production by Streptomyces ambofaciens. Bioprocess Biosyst Eng 28, 55–61 (2005). https://doi.org/10.1007/s00449-005-0015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-005-0015-2

Keywords

Navigation