Bioprocess and Biosystems Engineering

, Volume 26, Issue 6, pp 385–391 | Cite as

Performance prediction of industrial centrifuges using scale-down models

  • M. Boychyn
  • S. S. S. Yim
  • M. Bulmer
  • J. More
  • D. G. Bracewell
  • M. Hoare
Original Paper

Abstract

Computational fluid dynamics was used to model the high flow forces found in the feed zone of a multichamber-bowl centrifuge and reproduce these in a small, high-speed rotating disc device. Linking the device to scale-down centrifugation, permitted good estimation of the performance of various continuous-flow centrifuges (disc stack, multichamber bowl, CARR Powerfuge TM) for shear-sensitive protein precipitates. Critically, the ultra scale-down centrifugation process proved to be a much more accurate predictor of production multichamber-bowl performance than was the pilot centrifuge.

Keywords

Centrifugation Scale-down Shear Clarification 

List of symbols

BL

caulk width, m

C

centrifugation correction factor

Ca

Camp number

Clar

clarification, %

FL

correction factor for caulks on discs in centrifuge

mean velocity gradient, s−1

g

gravitational constant, m/s2

L

length, m

N

rotational speed, r/s

n

number of discs

Q

flow rate, m3/s

R

radius, m

r

radius, m

Re

Reynolds number

t

time, s

V

volume, m3

x

fractional acceleration time

y

fractional deceleration time

ZL

number of caulks on a disc in the centrifuge

Greek letters

ε

energy dissipation rate, W/kg

θ

half disc angle, rad

ρ

density, kg/m

Σ

equivalent settling area, m2

ω

angular velocity, rad/s

Subscripts

ds

disc-stack centrifuge

i

inner

L

liquid

mc

multichamber-bowl centrifuge

n

number

o

outer

ref

reference

tb

tubular-bowl centrifuge

References

  1. 1.
    Boychyn M, Yim SSS, Ayazi Shamlou PA, Bulmer M, More J, Hoare M (2001) Characterisation of flow intensity in continuous centrifuges for the development of laboratory mimics. Chem Eng Sci 56:4759-4770CrossRefGoogle Scholar
  2. 2.
    Ambler CM (1959) The theory of scaling up laboratory data for the sedimentation type centrifuge. J Biochem Microbiol Technol Eng 1:185–205Google Scholar
  3. 3.
    Maybury JP, Mannweiler K, Titchener-Hooker NJ, Hoare M, Dunnill P (1998) Performance of scaled down industrial disc stack centrifuge with a reduced feed material requirement. Bioproc Eng 18:191–199CrossRefGoogle Scholar
  4. 4.
    Mannweiler K, Hoare M (1992) The scale-down of an industrial disc stack centrifuge. Bioproc Eng 8:19–25Google Scholar
  5. 5.
    Boychyn M, Doyle W, Bulmer M, More J, Hoare M (2000) Laboratory scale-down of protein purification processes involving fractional precipitation and centrifugal recovery. Biotechnol Bioeng 69:1–10CrossRefPubMedGoogle Scholar
  6. 6.
    Mannweiler K, Titchener-Hooker NJ, Hoare M (1989) Biochemical engineering improvements in the centrifugal recovery of biological particles. Institution of Chemical Engineers Symposium on Advances in Biochemical Engineering. Institution of Chemical Engineers, Rugby, UK, pp 19–25Google Scholar
  7. 7.
    Versteeg HK, Malalasekera W (1955) An introduction to computational fluid dynamics Longman Scientific & Technical, Harlow, UK; John Wiley, New YorkGoogle Scholar
  8. 8.
    Schlichting H (1979) Boundary layer theory, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  9. 9.
    Soon SY, Harbidge J, Titchener-Hooker NJ, Shamlou PA (2001) Prediction of drop breakage in an ultra high velocity jet homogenizer. J Chem Eng Jpn 34:640–646CrossRefGoogle Scholar
  10. 10.
    Boulding N, Yim SSS, Keshavarz-Moore E, Ayazi Shamlou P, Berry M (2002) Ultra scale-down to predict filtering centrifugation of secreted antibody fragments from fungal broth. Biotechnol Bioeng 79:381–388CrossRefPubMedGoogle Scholar
  11. 11.
    Levy MS, Ciccolini LAS, Yim SS, Tsai JT, Titchener-Hooker NJ, Ayazi Shamlou P, Dunnill P (1999) The effects of material properties and fluid flow intensity on plasmid DNA recovery during cell lysis. Chem Eng Sci 54:3171–3178CrossRefGoogle Scholar
  12. 12.
    Neal G, Christie J, Keshavarz-Moore E, Ayazi Shamlou P (2003) Ultra scale-down approach for the prediction of full-scale recovery of ovine polycolonal immunoglobulins used in the manufacture of snake venom-specific fab fragment Biotechnol Bioeng, 81:149–157Google Scholar
  13. 13.
    Svarovsky L (1990) Solid-liquid separation. Butterworth, LondonGoogle Scholar
  14. 14.
    More JE, Harvey MJ (1991) Purification technologies for human plasma albumin. In: Harris JR (ed) Blood separation and plasma fractionation. Wiley–Liss, London, pp 261–306Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. Boychyn
    • 1
    • 4
  • S. S. S. Yim
    • 1
  • M. Bulmer
    • 2
  • J. More
    • 2
  • D. G. Bracewell
    • 1
    • 3
  • M. Hoare
    • 1
    • 3
  1. 1.The Advanced Centre for Biochemical EngineeringUniversity College LondonLondonUK
  2. 2.Bio Products LaboratoryElstreeUK
  3. 3.The EPSRC IMRC for BioprocessingUniversity College LondonLondonUK
  4. 4.Eli Lilly and Co.IndianapolisUSA

Personalised recommendations