Skip to main content
Log in

Expected linear round synchronization: the missing link for linear Byzantine SMR

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

State Machine Replication (SMR) solutions often divide time into rounds, with a designated leader driving decisions in each round. Progress is guaranteed once all correct processes synchronize to the same round, and the leader of that round is correct. Recently suggested Byzantine SMR solutions such as HotStuff, and LibraBFT achieve progress with a linear message complexity and a constant time complexity once such round synchronization occurs. But round synchronization itself incurs an additional cost. By Dolev and Reischuk’s lower bound, any deterministic solution must have \(\Omega (n^2)\) communication complexity. Yet the question of randomized round synchronization with an expected linear message complexity remained open. We present an algorithm that, for the first time, achieves round synchronization with expected linear message complexity and expected constant latency. Existing protocols can use our round synchronization algorithm to solve Byzantine SMR with the same asymptotic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM (JACM) 35(2), 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  2. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: OSDI 99, 173–186 (1999)

  3. Gueta, G.G., Abraham, I., Grossman, S., Malkhi, D., Pinkas, B., Reiter, M., Seredinschi, D.-A., Tamir, O., Tomescu, A.: SBFT: a scalable and decentralized trust infrastructure. In: 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 568–580 (2019). IEEE

  4. Baudet, M., Ching, A., Chursin, A., Danezis, G., Garillot, F., Li, Z., Malkhi, D., Naor, O., Perelman, D., Sonnino, A.: State machine replication in the libra blockchain. Technical Report, Calibra (2019)

  5. Yin, M., Malkhi, D., Reiter and, M., Gueta, G.G., Abraham, I.: HotStuff: BFT consensus with linearity and responsiveness. In: 38th ACM Symposium on Principles of Distributed Computing (PODC’19) (2019)

  6. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative byzantine fault tolerance. In: ACM SIGOPS Operating Systems Review, vol. 41, pp. 45–58 (2007). ACM

  7. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT consensus. arXiv preprint arXiv:1807.04938 (2018)

  8. Buterin, V., Griffith, V.: Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437 (2017)

  9. Gelashvili, R., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A., Xiang, Z.: Jolteon and ditto: network-adaptive efficient consensus with asynchronous fallback. In: Financial Cryptography and Data Security: 26th International Conference, FC 2022, Grenada, May 2–6, 2022, Revised Selected Papers, pp. 296–315 (2022). Springer

  10. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement. In: Proceedings of the First ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. PODC ’82, pp. 132–140. Association for Computing Machinery, New York, NY, USA (1982)

  11. Naor, O., Baudet, M., Malkhi, D., Spiegelman, A.: Cogsworth: Byzantine view synchronization. In: Proceedings of the Cryptoeconomic Systems Conference (CES’20) (2020)

  12. Naor, O., Keidar, I.: Expected linear round synchronization: the missing link for linear Byzantine SMR. In: 34th International Symposium on Distributed Computing (DISC 2020) (2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik

  13. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 514–532 (2001). Springer

  14. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: practical asynchronous Byzantine agreement using cryptography. J. Cryptol. 18(3), 219–246 (2005)

    Article  MathSciNet  Google Scholar 

  15. Shoup, V.: Practical threshold signatures. In: Advances in Cryptology-EUROCRYPT 2000: International Conference on the Theory and Application of Cryptographic Techniques Bruges, Belgium, May 14–18, 2000 Proceedings 19, pp. 207–220 (2000). Springer

  16. Libert, B., Joye, M., Yung, M.: Born and raised distributively: fully distributed non-interactive adaptively-secure threshold signatures with short shares. In: Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, pp. 303–312 (2014)

  17. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: practical asynchronous Byzantine agreement using cryptography. J. Cryptol. 18(3), 219–246 (2005)

    Article  MathSciNet  Google Scholar 

  18. Loss, J., Moran, T.: Combining asynchronous and synchronous byzantine agreement: the best of both worlds. Cryptology ePrint Archive (2018)

  19. Keidar, I., Kokoris-Kogias, E., Naor, O., Spiegelman, A.: All you need is dag. In: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, pp. 165–175 (2021)

  20. Spiegelman, A., Giridharan, N., Sonnino, A., Kokoris-Kogias, L.: Bullshark: DAG BFT protocols made practical. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, pp. 2705–2718 (2022)

  21. Keidar, I., Naor, O., Poupko, O., Shapiro, E.: Cordial miners: fast and efficient consensus for every eventuality. In: 37th International Symposium on Distributed Computing (DISC 2023) (2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik

  22. Abraham, I., Malkhi, D., Spiegelman, A.: Asymptotically optimal validated asynchronous Byzantine agreement. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pp. 337–346 (2019)

  23. Kokoris Kogias, E., Malkhi, D., Spiegelman, A.: Asynchronous distributed key generation for computationally-secure randomness, consensus, and threshold signatures. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, pp. 1751–1767 (2020)

  24. Das, S., Yurek, T., Xiang, Z., Miller, A., Kokoris-Kogias, L., Ren, L.: Practical asynchronous distributed key generation. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 2518–2534 (2022). IEEE

  25. Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task system. J. ACM (JACM) 39(4), 745–763 (1992)

    Article  MathSciNet  Google Scholar 

  26. Ben-David, S., Borodin, A., Karp, R., Tardos, G., Wigderson, A.: On the power of randomization in on-line algorithms. Algorithmica 11(1), 2–14 (1994)

    Article  MathSciNet  Google Scholar 

  27. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Competitive paging algorithms. J. Algorithms 12(4), 685–699 (1991)

    Article  Google Scholar 

  28. Bracha, G.: Asynchronous Byzantine agreement protocols. Inf. Comput. 75(2), 130–143 (1987)

    Article  MathSciNet  Google Scholar 

  29. Lamport, L.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)

    Google Scholar 

  30. Oki, B.M., Liskov, B.H.: Viewstamped replication: a new primary copy method to support highly-available distributed systems. In: Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Computing, pp. 8–17 (1988). ACM

  31. Keidar, I., Dolev, D.: Efficient message ordering in dynamic networks. In: Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 68–76 (1996)

  32. Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems. In: Proceedings of the Eleventh ACM Symposium on Operating Systems Principles, pp. 123–138 (1987)

  33. Awerbuch, B.: Complexity of network synchronization. J. ACM (JACM) 32(4), 804–823 (1985)

    Article  MathSciNet  Google Scholar 

  34. Ford, B.: Threshold logical clocks for asynchronous distributed coordination and consensus. arXiv preprint arXiv:1907.07010 (2019)

  35. Keidar, I., Shraer, A.: Timeliness, failure-detectors, and consensus performance. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Distributed Computing, pp. 169–178 (2006)

  36. Keidar, I., Shraer, A.: How to choose a timing model. IEEE Trans. Parallel Distrib. Syst. 19(10), 1367–1380 (2008)

    Article  Google Scholar 

  37. Gafni, E.: Round-by-round fault detectors (extended abstract) unifying synchrony and asynchrony. In: Proceedings of the Seventeenth Annual ACM Symposium on Principles of Distributed Computing, pp. 143–152 (1998)

  38. Bravo, M., Chockler, G., Gotsman, A.: Making Byzantine consensus live. In: 34st International Symposium on Distributed Computing (DISC 2020) (2020). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

  39. Ramasamy, H.V., Cachin, C.: Parsimonious asynchronous Byzantine-fault-tolerant atomic broadcast. In: International Conference on Principles of Distributed Systems, pp. 88–102 (2005). Springer

  40. Cohen, S., Keidar, I., Naor, O.: Byzantine agreement with less communication: recent advances. ACM SIGACT News 52(1), 71–80 (2021)

    Article  MathSciNet  Google Scholar 

  41. Cohen, S., Keidar, I., Spiegelman, A.: Not a COINcidence: sub-quadratic asynchronous Byzantine agreement WHP. In: 34st International Symposium on Distributed Computing (DISC 2020) (2020). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

  42. Blum, E., Katz, J., Liu-Zhang, C.-D., Loss, J.: Asynchronous Byzantine agreement with subquadratic communication. Cryptology ePrint Archive, Report 2020/851 (2020)

  43. Civit, P., Dzulfikar, M.A., Gilbert, S., Gramoli, V., Guerraoui, R., Komatovic, J., Ribeiro Vidigueira, M.J.: Byzantine consensus is \(\theta (n^2)\): the Dolev-Reischuk bound is tight even in partial synchrony! Technical report, Dagstuhl Publishing (2022)

  44. Lewis-Pye, A.: Quadratic worst-case message complexity for state machine replication in the partial synchrony model. arXiv preprint arXiv:2201.01107 (2022)

  45. Lewis-Pye, A., Abraham, I.: Fever: Optimal responsive view synchronisation. arXiv preprint arXiv:2301.09881 (2023)

Download references

Acknowledgements

Oded Naor is grateful to the Azrieli Foundation for the award of an Azrieli Fellowship, and to the Technion Hiroshi Fujiwara CyberSecurity Research Center for providing a research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oded Naor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naor, O., Keidar, I. Expected linear round synchronization: the missing link for linear Byzantine SMR. Distrib. Comput. 37, 19–33 (2024). https://doi.org/10.1007/s00446-023-00459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-023-00459-9

Keywords

Navigation