Distributed Computing

, Volume 30, Issue 1, pp 17–48 | Cite as

A unified approach for gathering and exclusive searching on rings under weak assumptions

  • Gianlorenzo D’Angelo
  • Alfredo Navarra
  • Nicolas Nisse
Article

Abstract

Consider a set of mobile robots placed on distinct nodes of a discrete, anonymous, and bidirectional ring. Asynchronously, each robot takes a snapshot of the ring, determining the size of the ring and which nodes are either occupied by robots or empty. Based on the observed configuration, it decides whether to move to one of its adjacent nodes or not. In the first case, it performs the computed move, eventually. This model of computation is known as Look-Compute-Move. The computation depends on the required task. In this paper, we solve both the well-known Gathering and Exclusive Searching tasks. In the former problem, all robots must simultaneously occupy the same node, eventually. In the latter problem, the aim is to clear all edges of the graph. An edge is cleared if it is traversed by a robot or if both its endpoints are occupied. We consider the exclusive searching where it must be ensured that two robots never occupy the same node. Moreover, since the robots are oblivious, the clearing is perpetual, i.e., the ring is cleared infinitely often. In the literature, most contributions are restricted to a subset of initial configurations. Here, we design two different algorithms and provide a characterization of the initial configurations that permit the resolution of the problems under very weak assumptions. More precisely, we provide a full characterization (except for few pathological cases) of the initial configurations for which gathering can be solved. The algorithm relies on the necessary assumption of the local-weak multiplicity detection. This means that during the Look phase a robot detects also whether the node it occupies is occupied by other robots, without acquiring the exact number. For the exclusive searching, we characterize all (except for few pathological cases) aperiodic configurations from which the problem is feasible. We also provide some impossibility results for the case of periodic configurations.

References

  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 58–82 (2006)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Proceedings of the 24th International Symposium on Distributed Computing (DISC), Lecture Notes in Computer Science, vol. 6343, pp. 297–311 (2010)Google Scholar
  3. 3.
    Blin, L., Burman, J., Nisse, N.: Exclusive graph searching. In: Proceedings of the 21st Annual European Symposium on Algorithms (ESA), Lecture Notes in Computer Science, vol. 8125, pp. 181–192. Springer (2013)Google Scholar
  4. 4.
    Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring exploration without chirality. In: Proceedings of the 24th International Symposium on Distributed Computing (DISC), Lecture Notes in Computer Science, vol. 6343, pp. 312–327 (2010)Google Scholar
  5. 5.
    Bonnet, F., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Asynchronous exclusive perpetual grid exploration without sense of direction. In: 15th International Conference on Principles of Distributed Systems (OPODIS), Lecture Notes in Computer Science, vol. 7109, pp. 251–265. Springer (2011)Google Scholar
  6. 6.
    Chalopin, J., Das, S.: Rendezvous of mobile agents without agreement on local orientation. In: Proceedings of the 37th International Colloquium on Automata, Languages and Programming (ICALP), vol. 6199, pp. 515–526 (2010)Google Scholar
  7. 7.
    Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent and oblivious robots. In: 36th International Workshop on Graph Theoretic Concepts in Computer Science (WG), Lecture Notes in Computer Science, vol. 6410, pp. 208–219. Springer (2010)Google Scholar
  8. 8.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Czyzowicz, J., Gąsieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410(6–7), 481–499 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids and trees without multiplicity detection. Theor. Comput. Sci. 610, 158–168 (2016)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering asynchronous and oblivious robots on basic graph topologies under the look-compute-move model. In: Alpern, S., Fokkink, R., Gąsieniec, L., Lindelauf, R., Subrahmanian, V. (eds.) Search Theory: A Game Theoretic Perspective, pp. 197–222. Springer, Berlin (2013)CrossRefGoogle Scholar
  12. 12.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering on rings under the look-compute-move model. Distrib. Comput. 27(4), 255–285 (2014)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering six oblivious robots on anonymous symmetric rings. J. Discrete Algorithms 26, 16–27 (2014)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: Computing on rings by oblivious robots: a unified approach for different tasks. Algorithmica 4(72), 1055–1096 (2015)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    D’Angelo, G., Navarra, A., Nisse, N.: Gathering and exclusive searching on rings under minimal assumptions. In: Proceedings of the 15th International Conference on Distributed Computing and Networking (ICDCN), Lecture Notes in Computer Science, vol. 8314, pp. 149–164. Springer (2014)Google Scholar
  16. 16.
    Di Stafano, G., Navarra, A.: Gathering of oblivious robots on infinite grids with minimum traveled distance. Inf. Comput. (to appear)Google Scholar
  17. 17.
    Di Stefano, G., Montanari, P., Navarra, A.: About ungatherability of oblivious and asynchronous robots on anonymous rings. In: Proceedings of the 26th International Workshop on Combinatorial Algorithms (IWOCA’15), Lecture Notes in Computer Science, vol. 9538, pp. 136–147. Springer (2016)Google Scholar
  18. 18.
    Dieudonne, Y., Pelc, A., Peleg, D.: Gathering despite mischief. In: Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 527–540 (2012)Google Scholar
  19. 19.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory: tree exploration by asynchronous oblivious robots. Theor. Comput. Sci. 411(14–15), 1583–1598 (2010)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: How many oblivious robots can explore a line. Inf. Process. Lett. 111(20), 1027–1031 (2011)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: ring exploration by asynchronous oblivious robots. Algorithmica 65(3), 562–583 (2013)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory, vol. 3. Morgan & Claypool (2012). doi:10.2200/S00440ED1V01Y201208DCT010
  23. 23.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots: the role of common knowledge in pattern formation by autonomous mobile robots. In: 10th International Symposium on Algorithms and Computation (ISAAC), Lecture Notes in Computer Science, vol. 1741, pp. 93–102. Springer (1999)Google Scholar
  24. 24.
    Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399(3), 236–245 (2008)Google Scholar
  25. 25.
    Ilcinkas, D., Nisse, N., Soguet, D.: The cost of monotonicity in distributed graph searching. Distrib. Comput. 22(2), 117–127 (2009)CrossRefMATHGoogle Scholar
  26. 26.
    Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algorithm with local weak multiplicity in rings. In: Proceedings of the 17th International Colloquium on Structural Information and Communication Complexity (SIROCCO), Lecture Notes in Computer Science, vol. 6058, pp. 101–113 (2010)Google Scholar
  27. 27.
    Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)Google Scholar
  28. 28.
    Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gathering from symmetric configurations. In: Proceedings of the 18th International Colloquium on Structural Information and Communication Complexity (SIROCCO), Lecture Notes in Computer Science, vol. 6796, pp. 150–161 (2011)Google Scholar
  29. 29.
    Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Gathering an even number of robots in an odd ring without global multiplicity detection. In: Proceedings of the 37th International Symposium on Mathematical Foundations of Computer Science (MFCS), Lecture Notes in Computer Science, vol. 7464, pp. 542–553 (2012)Google Scholar
  30. 30.
    Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411, 3235–3246 (2010)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390, 27–39 (2008)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in the Ring. Synthesis Lectures on Distributed Computing Theory, vol. 1. Morgan & Claypool (2010). doi:10.2200/S00278ED1V01Y201004DCT001
  33. 33.
    Prencipe, G.: Instantaneous actions vs. full asynchronicity: controlling and coordinating a set of autonomous mobile robots. In: Proceedings of the 7th Italian Conference on Theoretical Computer Science (ICTCS), pp. 154–171 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gianlorenzo D’Angelo
    • 1
  • Alfredo Navarra
    • 2
  • Nicolas Nisse
    • 3
  1. 1.Gran Sasso Science Institute (GSSI)L’AquilaItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità degli Studi di PerugiaPerugiaItaly
  3. 3.INRIA/I3S(CNRS/UNSA)Sophia Antipolis CedexFrance

Personalised recommendations