Skip to main content

Advertisement

Log in

Experimental sintering of crystal-rich rhyolitic ash at high fluid pressures with implications for degassing of magma

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We present an experimental investigation of surface tension–driven sintering and associated densification of glassy rhyolitic ash and crystals under shallow volcanic conduit conditions. Rhyolitic glass (< 45 μm) and quartz were run in suites of hydrothermal experiments for 30 min to 9 h. Fluid pressure was isobaric (\({P}_{{H}_{2}O}=40 MPa\)) for all runs, and temperature was held constant at a value between 675 and 850 °C. Three size populations of quartz were used: 45–76 µm (fine), 90–125 µm (medium), and 250–500 µm (coarse). All samples evolved from loose, cohesion-less particles to a friable, agglutinated framework of glass with an interconnected network of pores of ≥ 15 vol.%. Samples sintered more slowly at cooler temperatures and with finer crystals relative to higher temperatures or coarser crystals. Compared with previous experiments on glass-only samples, all crystal-bearing samples reached a higher final porosity, and those containing fine and medium crystals also sintered more slowly. Permeability was determined via numerical simulation for one sample and was found to be similar to natural samples with equivalent porosity. Our results suggest that solid particles inhibit the sintering process by holding porous networks open. Sintered magma in the shallow conduit that contains crystal (and lithic) particles can thus experience more sustained degassing and outgassing than crystal-free systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bagdassarov N, Dorfman A, Dingwell DB (2000) Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt. Am Mineral 85:33–40

    Article  Google Scholar 

  • Barnes JD, Prather TJ, Cisneros M, Befus K, Gardner JE, Larson TE (2014) Stable chlorine isotope behavior during volcanic degassing of H2O and CO2 at mono craters. CA Bull Volcanol 76:805

    Article  Google Scholar 

  • Bursik M (1993) Subplinian eruption mechanisms inferred from volatile and clast dispersal data. J Volcanol Geotherm Res 57:57–70

    Article  Google Scholar 

  • Castro JM, Bindeman IN, Tuffen H, Schipper IC (2014) Explosive origin of silicic lava: textural and H2O evidence for pyroclastic degassing during rhyolite effusion. Earth Planet Sci Lett 405:52–61

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman, J (2013) An introduction to the rock-forming minerals. Mineralogical Society of Great Britain, and Ireland, 2013, ISBN: 9780903056274

  • Degruyter WO, Bachmann A, Burgisser M (2012) The effects of outgassing on the transition between effusive and explosive silicic eruptions. Earth Planet Sci Lett 349–350:161–170 ISSN 0012-821X

    Article  Google Scholar 

  • Eberstein M, Reinsch S, Müller R, Deubener J, Schiller WA (2009) Sintering of glass matrix composites with small rigid inclusions. J Eur Ceram Soc 29:2469–2479

    Article  Google Scholar 

  • Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602

    Article  Google Scholar 

  • Frenkel J (1945) Viscous flow of crystalline bodies under the action of surface tension. J Phys 9:385–391

    Google Scholar 

  • Gardner JE (2007) Bubble coalescence in rhyolitic melts during decompression from high pressure. J Volcanol Geotherm Res 166:161–176

    Article  Google Scholar 

  • Gardner JE, Llewellin EW, Watkins JM, Befus KS (2017) Formation of obsidian pyroclasts by sintering of ash particles in the volcanic conduit. Earth Planet Sci Lett 459:252–263

    Article  Google Scholar 

  • Gardner JE, Wadsworth FB, Llewellin EW, Watkins JM, Coumans JP (2018) Experimental sintering of ash at conduit conditions and implications for the longevity of tuffisites. Bull Volcanol 80:23

    Article  Google Scholar 

  • Gardner JE, Wadsworth FB, Llewellin EW, Watkins JM, Coumans JP (2019) Experimental constraints on the textures and origin of obsidian pyroclasts. Bull Volcanol 81:22

    Article  Google Scholar 

  • Hess KU, Dingwell DB (1996) Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am Mineral 81:1297–1300

    Google Scholar 

  • Jaupart C, Allegre CJ (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102:413–429

    Article  Google Scholar 

  • Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J Geophys Res 103:29759–29779

    Article  Google Scholar 

  • Liu Y, Zhang Y, Behrens H (2005) Solubility of H2O in rhyolitic melts at low pressure and a new empirical model for mixed H2O-CO2 solubility in rhyolitic melts. J Volcanol Geotherm Res 143:219–235

    Article  Google Scholar 

  • Llewellin E (2010a) LBflow: an extensible lattice Boltzmann framework for the simulation of geophysical flows. Part I: Theory and Implementation, Comp Geosci 36:115–122

    Google Scholar 

  • Llewellin E (2010b) LBflow: an extensible lattice Boltzmann framework for the simulation of geophysical flows. Part II: usage and validation. Comput Geosci 36:123–132

    Article  Google Scholar 

  • Mader HM, Llewellin EW, Mueller SP (2013) The rheology of two-phase magmas: a review and analysis. J Volcanol Geotherm Res 257:135–158

    Article  Google Scholar 

  • Maron SH, Pierce PE (1956) Application of Ree-Eyring generalized flow theory to suspensions of spherical particles. J Colloid Sci 11:80–95

    Article  Google Scholar 

  • Marsh BD (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. Contrib Mineral Petrol 78:85–98

    Article  Google Scholar 

  • Mueller S, Melnik O, Spieler O, Scheu B, Dingwell DB (2005) Permeability and degassing of dome lavas undergoing rapid decompression: an experimental determination. Bull Volcanol 67:526–538

    Article  Google Scholar 

  • Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Proc Roy Soc A 466:1201–1228

    Article  Google Scholar 

  • Ochs FA, Lange RA (1999) The density of hydrous magmatic liquids. Science 283:5406

    Article  Google Scholar 

  • Pascual MJ, Durán A, Prado MO, Zanotto ED (2005) Model for sintering devitrifying glass particles with embedded rigid fibers. J Am Cer Soc 88:1427–1434

    Article  Google Scholar 

  • Saubin E, Tuffen H, Gurioli L, Owen J, Castro JM, Berlo K, McGowan ME, Schipper CI, Wehbe K (2016) Conduit dynamics in transitional rhyolitic activity recorded by tuffisite vein textures from the 2008–2009 Chaitén Eruption. Front Earth Sci 4:59. https://doi.org/10.3389/feart.2016.00059

  • Scherer GW (1977) Sintering of low-density glasses: I, Theory. J Am Ceram Soc 60:236–239

    Article  Google Scholar 

  • Self S, Goff F, Gardner JN, Wright JV, Kite WM (1986) Explosive rhyolitic volcanism in the Jemez Mountains’ vent locations, caldera development and relation to regional structure. J Geophys Res 91:1779–1798

    Article  Google Scholar 

  • Sieh K, Bursik M (1986) Most recent eruption of the Mono Craters, eastern central California. J Geophys Res 91:12539–12571

    Article  Google Scholar 

  • Smith RL, Bailey RA (1966) The Bandelier Tuff: a study in ash-flow eruption cycles from zoned magma chambers. Bull Volcanol 29:83–104

    Article  Google Scholar 

  • Stasiuk MV, Barclay J, Carroll MR, Jaupart C, Ratte JC, Sparks RSJ, Tait SR (1996) Bull Volcanol 58:117–130

    Article  Google Scholar 

  • Stevenson RJ, Dingwell DB, Webb SL, Sharp TG (1996) Viscosity of microlite-bearing rhyolitic obsidians: an experimental study. Bull Volcanol 58:298–309

    Article  Google Scholar 

  • Tuffen H, Dingwell D (2005) Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions. Bull Volcanol 67:370–387

    Article  Google Scholar 

  • Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31:1089–1092

    Article  Google Scholar 

  • Wadsworth FB, Vasseur J, Scheu B, Kendrick JE, Lavallée Y, Dingwell DB (2016a) Universal scaling of fluid permeability during volcanic welding and sediment diagenesis. Geology 44:219–222

    Article  Google Scholar 

  • Wadsworth FB, Vasseur J, Llewellin EW, Schauroth J, Dobson KJ, Scheu B, Dingwell DB (2016b) Sintering of viscous droplets under surface tension. Proc Roy Soc A 472:20150780

    Article  Google Scholar 

  • Wadsworth FB, Vasseur J, Schauroth J, Llewellin EW, Dobson KJ, Havard T, Scheu B, von Aulock FW, Gardner JE, Dingwell DB, Hess KU (2019) A general model for welding of ash particles in volcanic systems validated using in situ X-ray tomography. Earth Planet Sci Lett 525:115726

    Article  Google Scholar 

  • Wadsworth FB, Llewellin EW, Vasseur J, Gardner JE, Tuffen H (2020) Explosive–effusive volcanic eruption transitions caused by sintering. Sci Adv 6:39

    Article  Google Scholar 

  • Wadsworth FB, Llewellin EW, Castro JM, Tuffen H, Schipper CI, Gardner JE, Vasseur J, Foster A, Damby DE, McIntosh IM, Boettcher S, Unwin HE, Heap MJ, Farquharson JI, Dingwell DB, Iacovino K, Paisley R, Jones C, Whattam (2022a) A reappraisal of explosive-effusive silicic eruption dynamics: syn-eruptive assembly of lava from the products of cryptic fragmentation. J Volcanol Geotherm Res 432:107672

    Article  Google Scholar 

  • Wadsworth FB, Vasseur J, Llewellin EW, Dingwell DB (2022b) Hot sintering of melts, glasses and magmas. Rev Mineral Geochem 87:801–840

    Article  Google Scholar 

  • Wadsworth FB, Vasseur J, Heap MJ, Carbillet L, Dingwell DB, Reuschle T, Baud P (2023) A universal model for the permeability of sintered materials. Acta Mater 250:118859

    Article  Google Scholar 

  • Wang Y, Gardner JE, Hoblitt RP (2021) Formation of dense pyroclasts by sintering of ash particles during the preclimactic eruptions of Mt. Pinatubo in 1991. Bull Volcanol 83:6

    Article  Google Scholar 

  • Yoshida S, Koyaguchi T (1999) A new regime of volcanic eruption due to the relative motion between liquid and gas. J Volcanol Geotherm Res 89:303–315

    Article  Google Scholar 

  • Zhang Y, Ni H (2010) Diffusion of H, C, and O components in silicate melts. Rev Mineral Geochem 72:171–225

    Article  Google Scholar 

  • Zhang Y, Belcher R, Ihinger PD, Wang L, Xu Z, Newman S (1997) New calibration of infrared measurement of dissolved water in rhyolitic glasses. Geochim Cosmochim Acta 61:3089–3100

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank W Aubin and N Meszaros for their help with experiments and analytical techniques and J Maisano for collection and analysis of HRXCT data. The authors acknowledge support from the National Science Foundation from grant EAR-2211627 to JEG and from the Natural Environment Research Council from grant NE/X015440/1 to FBW and EWL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Gardner.

Additional information

Editorial responsibility: L. Pioli

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blandon, R., Gardner, J.E., Wadsworth, F.B. et al. Experimental sintering of crystal-rich rhyolitic ash at high fluid pressures with implications for degassing of magma. Bull Volcanol 85, 63 (2023). https://doi.org/10.1007/s00445-023-01678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-023-01678-5

Keywords

Navigation