Skip to main content

Advertisement

Log in

Lessons learned from the 1980–1986 eruption of the Mount St. Helens composite lava dome

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

After its cataclysmic explosive eruptive activity on May 18, 1980, most of the output of Mount St. Helens (MSH) for the next six and a half years was quietly extruding lava, which built up one of the best documented and most instructive lava domes of the twentieth century. The unprecedented amount of data collected about the growth of the dome led to a profusion of new models and concepts. In this paper, we first describe some of the early mechanical models and then focus on three specific aspects of the emplacement of the MSH lava dome that were measurable in particularly great detail: the partitioning between exogenous and endogenous styles of growth; the distribution of vesicular textures and their relationship to volatile contents and eruptive conditions; and the presence of characteristic structural features like fractures, folds, and spines. Taken together, these three overlapping physical manifestations of magmatic behavior, evidence of which may be preserved in the geologic record or observed with remote sensing, can provide insights about whether a quietly extruding dome is likely to exhibit dangerous endogenic pyroclastic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson SW, Fink JH (1989) Hydrogen-isotope evidence for extrusion mechanisms of the Mount St. Helens dome. Nature 341:521–523

    Article  Google Scholar 

  • Anderson SW, Fink JH (1990) The development and distribution of lava textures at the Mount St. Helens dome. In: Fink J (ed) The mechanics of lava flow and dome growth, IAVCEI proceedings in volcanology, vol 2. Springer, Heidelberg, pp 25–46

    Google Scholar 

  • Anderson SW, Fink JH (1992) Crease structures: indicators of emplacement rates and surface stress regimes of lava flows. Geol Soc Am Bull 104(5):615–625

    Article  Google Scholar 

  • Anderson SW, Fink JH, Rose WI (1995) Mount St. Helens and Santiaguito lava domes: the effect of short-term eruption rate on surface texture and degassing processes. J Volcanol Geotherm Res 69:105–116

    Article  Google Scholar 

  • Anderson SW, Stofan ER, Plaut JJ, Crown DA (1998) Block size distributions on silicic lava flow surfaces: implications for emplacement conditions. Geol Soc Am Bull 110:1258–1267

    Article  Google Scholar 

  • Anderson SW, McColley S, Fink JH, Hudson R (2005) The development of fluid instabilities and preferred pathways in lava flow interiors: insights from analog experiments and fractal analysis. In: Manga M, Ventura G (eds) Kinematics and dynamics of lava flows, vol 396. Geological Society of America Special Paper, pp 147–161. https://doi.org/10.1130/2005.2396(10)

    Chapter  Google Scholar 

  • Andrews GDM, Kenderes SM, Whittington AG, Isom SL, Brown SR, Pettus HD, Cole BG, Gokey KJ (2021) The fold illusion: the origins and implications of ogives on silicic lavas. Earth Planet Sci Lett 553:116643

    Article  Google Scholar 

  • Barmin A, Melnik O, Sparks RSJ (2002) Periodic behavior in lava dome eruptions. Earth Planet Sci Lett 199(1–2):173–184

    Article  Google Scholar 

  • Blake S (1990) Viscoplastic models of lava domes. In: Fink J (ed) The mechanics of lava flow and dome growth, IAVCEI proceedings in volcanology, vol 2. Springer, Heidelberg, pp 88–126

    Google Scholar 

  • Boudon G, Balcone-Boissard H (2021) Volcanological evolution of Montagne Pelée (Martinique): a textbook case of alternating Plinian and dome-forming eruptions. Earth Sci Rev 221:103754

    Article  Google Scholar 

  • Bull KF, Buurman H (2013) An overview of the 2009 eruption of redoubt volcano, Alaska. J Volcanol Geotherm Res 259:2–15

    Article  Google Scholar 

  • Bull KF, Anderson SW, Diefenbach A, Wessel RL, Henton S (2013) Emplacement of the final lava dome of the 2009 eruption of redoubt volcano, Alaska. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2012.06.014

  • Burzynski AM, Anderson SW, Morrison K, Patrick M, Orr T, Thelen W (2018) Lava lake thermal pattern classification using self-organizing maps and relationships to eruption processes at Kīlauea volcano, Hawaii. In: Poland M, Garcia M, Camp V, Grunder A (eds) Field volcanology: a tribute to the distinguished career of Don Swanson: Geological Society of America special paper, vol 538, pp 307–324. https://doi.org/10.1130/2018.2538(14)

    Chapter  Google Scholar 

  • Calder ES, Lavallée Y, Kendrick JE, Bernstein M (2015) Lava dome eruptions. In: The encyclopedia of volcanoes. Academic Press, pp 343–362

    Chapter  Google Scholar 

  • Cashman KV (1992) Groundmass crystallization of Mount St. Helens dacite, 1980–1986: a tool for interpreting shallow magmatic processes. Contrib Mineral Petrol 109(4):431–449

    Article  Google Scholar 

  • Cashman KV, Taggart JE (1983) Petrologic monitoring of 1981 and 1982 eruptive products from mount St. Helens. Science 221(4618):1385–1387

    Article  Google Scholar 

  • Castro JM, Cashman KV, Joslin N, Olmsted B (2002) Structural origin of large gas cavities in the big obsidian flow, Newberry volcano. J Volcanol Geotherm Res 114(3–4):313–330

    Article  Google Scholar 

  • Castro JM, Schipper CI, Mueller SP, Militzer AS, Amigo A, Parejas CS, Jacob D (2013) Storage and eruption of near-liquidus rhyolite magma at Cordón Caulle, Chile. Bull Volcanol 75(4):1–17

    Article  Google Scholar 

  • Chadwick WW Jr, Swanson DA (1989) Thrust faults and related structures in the crater floor of Mount St. Helens volcano, Washington. Geol Soc Am Bull 101(12):1507–1519

    Article  Google Scholar 

  • Colombier M, Bernard B, Wright H, Le Pennec JL, Cáceres F, Cimarelli C, Heap MJ, Samaniego P, Vassuer J, Dingwell DB (2022) Conduit processes in crystal-rich dacitic magma and implications for eruptive cycles at Guagua Pichincha volcano, Ecuador. Bull Volcanol 84(12):105

    Article  Google Scholar 

  • Coombs ML, Bull KF, Vallance JW, Schneider DJ, Thoms EE, Wessels RL, McGimsey RG (2006) Timing, distribution, and volume of proximal products of the 2006 eruption of Augustine volcano. In: USGS professional paper 1769, the 2006 eruption of Augustine volcano, Alaska, pp 145–186

    Google Scholar 

  • DeGroat-Nelson PJ, Cameron BI, Fink JH, Holloway JR (2001) Hydrogen isotope analysis of rehydrated silicic lavas: implications for eruption mechanisms. Earth Planet Sci Lett 185(3–4):331–341

    Article  Google Scholar 

  • Denlinger, RP (1990) A model for dome eruptions at Mount St. Helens, Washington based on subcritical crack growth, in Fink, J. (ed) The mechanics of lava flow and dome growth, IAVCEI proceedings in volcanology, vol 2. Springer, Heidelberg, pp 70–87

  • Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323(6089):598–602

    Article  Google Scholar 

  • Farquharson JI, James MR, Tuffen H (2015) Examining rhyolite lava flow dynamics through photo-based 3D reconstructions of the 2011–2012 lava flow field at Cordón-Caulle, Chile. J Volcanol Geotherm Res 304:336–348

    Article  Google Scholar 

  • Fink JH (ed) (1990) The mechanics of lava flow and dome growth, IAVCEI proceedings in volcanology 2. Springer, Heidelberg

    Google Scholar 

  • Fink JH, Griffiths RW (1990) Radial spreading of viscous-gravity currents with solidifying crust. J Fluid Mech 221:485–509

    Article  Google Scholar 

  • Fink JH, Griffiths RW (1998) Morphology, eruption rates, and rheology of lava domes: insights from laboratory models. J Geophys Res Solid Earth 103(B1):527–545

    Article  Google Scholar 

  • Fink JH, Pollard DD (1983) Structural evidence for dikes beneath silicic domes, medicine Lake Highland volcano, California. Geology 11(8):458–461

    Article  Google Scholar 

  • Fink JH, Malin MC, Anderson SW (1990) Intrusive and extrusive growth of the mount St Helens lava dome. Nature 348(6300):435–437

    Article  Google Scholar 

  • Fink JH, Anderson SW, Manley CR (1992) Textural constraints on effusive silicic volcanism: beyond the permeable foam model. J Geophys Res Solid Earth 97(B6):9073–9083

    Article  Google Scholar 

  • Gregg TKP, Fink JH (1995) Quantification of submarine lava-flow morphology through analog experiments. Geology 23(1):73–76

    Article  Google Scholar 

  • Griffiths RW, Fink JH (1992) The morphology of lava flows in planetary environments: predictions from analog experiments. J Geophys Res 97(B13):19739–19748

    Article  Google Scholar 

  • Griffiths RW, Fink JH (1997) Solidifying Bingham extrusions: a model for the growth of silicic lava domes. J Fluid Mech 347:13–36

    Article  Google Scholar 

  • Harnett CE, Thomas ME, Calder ES, Ebmeier SK, Telford A, Murphy W, Neuberg J (2019) Presentation and analysis of a worldwide database for lava dome collapse events: the global archive of dome instabilities (GLADIS). Bull Volcanol 81:1–17

    Article  Google Scholar 

  • Harris AJ, Rose WI, Flynn LP (2003) Temporal trends in lava dome extrusion at Santiaguito 1922–2000. Bull Volcanol 65(2):77–89

    Article  Google Scholar 

  • Hoblitt RP, Harmon RS (1993) Bimodal density distribution of cryptodome dacite from the 1980 eruption of Mount St. Helens, Washington. Bull Volcanol 55:421–437

    Article  Google Scholar 

  • Huppert HE, Shepherd JB, Sigurdsson H, Sparks RSJ (1982) On lava dome growth, with application to the 1979 lava extrusion of the Soufriere of St. Vincent. J Volcanol Geotherm Res 14(3–4):199–222

    Article  Google Scholar 

  • Ikegami F, McPhie J, Carey R, Mudana R, Soule A, Jutzeler M (2018) The eruption of submarine rhyolite lavas and domes in the deep ocean–Havre 2012, Kermadec Arc. Front Earth Sci 6:147

    Article  Google Scholar 

  • Iverson RM (1990) Lava domes modeled as brittle shells that enclose pressurized magma, with application to Mount St. Helens. In: Fink J (ed) The mechanics of lava flow and dome growth, IAVCEI proceedings in volcanology, vol 2. Springer, Heidelberg, pp 47–69

    Google Scholar 

  • Kaneko T, Wooster MJ, Nakada S (2002) Exogenous and endogenous growth of the Unzen lava dome examined by satellite infrared image analysis. J Volcanol Geotherm Res 116(1–2):151–160

    Article  Google Scholar 

  • Koenig E, Fink JH (2002) The volcano listserv and its use in education, vol 2002. AGU Spring Meeting Abstracts, pp V51C–V506C

    Google Scholar 

  • LeWinter AL, Anderson SW, Finnegan DC, Patrick MR, Orr TR (2021) Crater growth and lava-lake dynamics revealed through multitemporal terrestrial lidar scanning at Kīlauea volcano, Hawaiʻi. In: Patrick M, Orr T, Swanson DA, Houghton B (eds) USGS professional paper 1867-C, the 2008–2018 Summit Lava Lake at Kīlauea volcano, Hawaiʻi, vol 26. https://doi.org/10.3133/pp1867C

    Google Scholar 

  • Luhr JF, Carmichael IS (1980) The Colima volcanic complex, Mexico: I. post-caldera andesites from Volcán Colima. Contrib Mineral Petrol 71:343–372

    Article  Google Scholar 

  • Lyman AW, Koenig E, Fink JH (2004) Predicting yield strengths and effusion rates of lava domes from morphology and underlying topography. J Volcanol Geotherm Res 129(1–3):125–138

    Article  Google Scholar 

  • Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15(6):549–552

    Article  Google Scholar 

  • Melnik O, Sparks RSJ (1999) Nonlinear dynamics of lava dome extrusion. Nature 402(6757):37–41

    Article  Google Scholar 

  • Melnik O, Sparks RSJ (2005) Controls on conduit magma flow dynamics during lava dome building eruptions. J Geophys Res Solid Earth 110(B02209)

  • Nakada S, Miyake Y, Sato H, Oshima O, Fujinawa A (1995) Endogenous growth of dacite dome at Unzen volcano (Japan), 1993–1994. Geology 23(2):157–160

    Article  Google Scholar 

  • Nakada S, Shimizu H, Ohta K (1999) Overview of the 1990–1995 eruption at Unzen volcano. J Volcanol Geotherm Res 89(1–4):1–22

    Article  Google Scholar 

  • Ondrusek J, Christensen PR, Fink JH (1993) Mapping the distribution of vesicular textures on silicic lavas using the thermal infrared multispectral scanner. J Geophys Res Solid Earth 98(B9):15903–15908

    Article  Google Scholar 

  • Pallister JS, Diefenbach AK, Burton WC, Muñoz J, Griswold JP, Lara LE, Lowenstern JB, Valenzuela CE (2013) The Chaitén rhyolite lava dome: eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma. Andean Geol 40(2):277–294

    Google Scholar 

  • Pappalardo RT, Greeley R (1995) A review of the origins of subparallel ridges and troughs: generalized morphological predictions from terrestrial models. J Geophys Res Planets 100(E9):18985–19007

    Article  Google Scholar 

  • Quick LC, Fagents SA, Núñez KA, Wilk KA, Beyer RA, Beddingfield CB, Martin ES, Prockter LM, Hurford TA (2022) Cryolava dome growth resulting from active eruptions on Jupiter's moon Europa. Icarus 387:115185

    Article  Google Scholar 

  • Rampey ML, Milam KA, McSween HY Jr, Moersch JE, Christensen PR (2007) Identity and emplacement of domical structures in the western Arcadia Planitia, Mars. J Geophys Res Planets 112(E6)

  • Ramsey MS, Fink JH (1999) Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring. Bull Volcanol 61(1):32–39

    Article  Google Scholar 

  • Ramsey MS, Wessels RL, Anderson SW (2012) Surface textures and dynamics of the 2005 Shiveluch volcano, Kamchatka. Geol Soc Am Bull 124:678–689. https://doi.org/10.1130/B30580.1

    Article  Google Scholar 

  • Rhodes E, Kennedy BM, Lavallée Y, Hornby A, Edwards M, Chigna G (2018) Textural insights into the evolving lava dome cycles at Santiaguito lava dome, Guatemala. Front Earth Sci 6:30

    Article  Google Scholar 

  • Romagnoli C, Casalbore D, Bosman A, Braga R, Chiocci FL (2013) Submarine structure of Vulcano volcano (Aeolian Islands) revealed by high-resolution bathymetry and seismo-acoustic data. Mar Geol 338:30–45

    Article  Google Scholar 

  • Rose WI, Pearson T, Bonis S (1976) Nuée ardente eruption from the foot of a dacite lava flow, Santiaguito volcano, Guatemala. Bulletin Volcanologique 40(1):23–38

    Article  Google Scholar 

  • Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980-1986 Mount St. Helens eruptions. J Geophys Res Solid Earth 98(B11):19667–19685

    Article  Google Scholar 

  • Schipper CI, Castro JM, Tuffen H, James MR, How P (2013) Shallow vent architecture during hybrid explosive–effusive activity at Cordón Caulle (Chile, 2011–12): evidence from direct observations and pyroclast textures. J Volcanol Geotherm Res 262:25–37

    Article  Google Scholar 

  • Sherrod DR, Scott WE, Stauffer PH (eds) (2008) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004–2006. US Geol Surv Prof Pap 1750:225–236

  • Siebert L, Begét JE, Glicken H (1995) The 1883 and late-prehistoric eruptions of Augustine volcano, Alaska. J Volcanol Geotherm Res 66(1–4):367–395

    Article  Google Scholar 

  • Sparks RSJ, Young SR (2002) The eruption of Soufrière Hills volcano, Montserrat (1995–1999): overview of scientific results. Geol Soc London Memoirs 21(1):45–69

    Article  Google Scholar 

  • Stofan ER, Anderson SW, Crown DA, Plaut JJ (2000) Emplacement and composition of steep-sided domes on Venus. J Geophys Res Planets 105:26757–26772

    Article  Google Scholar 

  • Swanson DA, Holcomb RT (1990) Regularities in growth of the Mount St. Helens dacite dome, 1980–1986, in Fink, J (ed) the mechanics of lava flow and dome growth. IAVCEI Proc Volcanol 2:3–24

    Article  Google Scholar 

  • Swanson DA, Dzurisin D, Holcomb RT, Iwatsubo EY, Chadwick WW Jr, Casadevall TJ, Ewert JW, Heliker CC (1987) Growth of the lava dome at Mount St. Helens, Washington (USA), 1981–1983 in Fink J (ed) the emplacement of silicic domes and lava flows. Geol Soc Am Spec Pap 212:1–16

    Google Scholar 

  • Taylor BE (1986) Magmatic volatiles: isotope variation of C, H and S—reviews in mineralogy in stable isotopes in high temperature geological processes. Mineral Soc Am:185–222

  • Taylor BE, Eichelberger JC, Westrich HR (1983) Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature 306(5943):541–545

    Article  Google Scholar 

  • Tuffen H, James MR, Castro JM, Schipper CI (2013) Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nat Commun 4(1):1–7

    Article  Google Scholar 

  • Underwood SJ, Feeley TC, Clynne MA (2013) Hydrogen isotope investigation of amphibole and glass in dacite magmas erupted in 1980–1986 and 2005 at Mount St. Helens, Washington. J Petrol 54:1047–1070

    Article  Google Scholar 

  • Wadsworth FB, Llewellin EW, Castro JM, Tuffen H, Schipper CI, Gardner JE, Vasseur J, Foster A, Damby DE, McIntosh IM, Boettcher S, Unwin HE, Heap MJ, Farquharson JI, Dingwell DB, Iacovino K, Paisley R, Jones C, Whattam J (2022) A reappraisal of explosive–effusive silicic eruption dynamics: syn-eruptive assembly of lava from the products of cryptic fragmentation. J Volcanol Geotherm Res 2022:107672

    Article  Google Scholar 

  • Watkins JM, Antonelli M (2021) Beyond equilibrium: kinetic isotope fractionation in high-temperature environments. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology 17(6):383–388

    Article  Google Scholar 

  • Watts RB, Herd RA, Sparks RSJ, Young SR, Druitt TH (2002) Growth patterns and emplacement of the andesitic lava dome at Soufriere Hills volcano, Montserrat. Mem Geol Soc Lond 21:115–152

    Article  Google Scholar 

  • Widiyantoro S, Ramdhan M, Métaxian JP, Cummins PR, Martel C, Erdmann S, Nugraha AD, Budi-Santoso A, Laurin A, Fahmi AA (2018) Seismic imaging and petrology explain highly explosive eruptions of Merapi volcano, Indonesia. Sci Rep 8(1):1–7

    Article  Google Scholar 

  • Wilson L, Head JW (2003) Lunar Gruithuisen and Mairan domes: rheology and mode of emplacement. J Geophys Res Planets 108(E2)

Download references

Acknowledgements

Our original work at Mount St. Helens in the 1980s could not have been accomplished without the generous assistance of Donald Swanson, Robin Holcomb, Dan Dzurisin, Fred Swanson, and their colleagues at the US Geological Survey and US Forest Service. Two helpful reviews by Jackie Kendrick and an anonymous referee significantly improved the manuscript.

Funding

Research was funded by grants from the National Science Foundation and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Fink.

Additional information

Editorial responsibility: U. Kueppers

This paper constitutes part of a topical collection: Over forty years since the May 1980 Mount Saint Helens eruption: Lessons, progress and perspectives

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fink, J., Anderson, S. Lessons learned from the 1980–1986 eruption of the Mount St. Helens composite lava dome. Bull Volcanol 85, 35 (2023). https://doi.org/10.1007/s00445-023-01642-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-023-01642-3

Keywords

Navigation