Skip to main content

Advertisement

Log in

Controls on juvenile ash morphologies in lava fountains: insights from laboratory experiments

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Hawaiian lava fountains produce a wide variety of pyroclasts, including achneliths, i.e., fluidal juvenile fragments. These range from nearly perfect spheres to very elongate Pele’s hairs, but the controls on such variations are not yet entirely clear. We therefore conduct laboratory-scale experiments using magmas of three different compositions (olivine-melilitite with 38 wt.% SiO2, alkali basalt with 45 wt.% SiO2, and basaltic trachyandesite with 54 wt.% SiO2). These magmas are ejected from a crucible using two different gas driving pressures (3 and 10 MPa) which correspond to low and high exit velocities. All magmas are at the same initial temperature of 1200 °C, and each run is somewhat comparable to a very short (< 1 s) lava fountain or Strombolian pulse. We collect and sieve the artificial ejecta and focus on two ash fractions, 0.71–0.5 mm (narrow + 1ɸ) and 88–63 µm (narrow + 4ɸ). We measure the componentry, morphometric parameters, and internal textures of these particles. We find two end-members in terms of fluidal ash morphologies: (1) olivine-melilitite ejected at low velocity mostly generates spheres and other equant shapes; (2) basaltic trachy-andesite ejected at high speed mostly generates Pele’s hairs and other elongate shapes. Natural achneliths from the 1959 Kīlauea Iki eruption (Hawaii, USA) are most similar in shape to the artificial ones generated with the alkali basalt ejected at high speed, and mostly consist of fluidal elongate grains and Pele’s tears. We analyze shape-controlling processes using high-speed video recordings of the experiments, and filament thinning theory. When hydrodynamic fragmentation occurs, surface tension acts to reshape clasts towards a sphere. Opposing factors can extend filament thinning timescales, and the two most relevant ones here are magma viscosity and ejection speed. This, along with the effects of rapid cooling, largely explains the observed morphological variety in artificial and natural fluidal-shaped juvenile ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andronico D, Cristaldi A, Scollo S (2008) The 4–5 September 2007 lava fountain at South-East Crater of Mt Etna, Italy. J Volcanol Geotherm Res 173:325–328

    Article  Google Scholar 

  • Andronico D, Cristaldi A, Del Carlo P, Taddeucci J (2009) Shifting styles of basaltic explosive activity during the 2002–03 eruption of Mt. Etna. Italy J Volcanol Geotherm Res 180:110–122

    Article  Google Scholar 

  • Andronico D, Scollo S, Lo Castro MD, Cristaldi A, Lodato L, Taddeucci J (2014) Eruption dynamics and tephra dispersal from the 24 November 2006 paroxysm at South-East Crater, Mt Etna, Italy. J Volcanol Geoth Res 274:78–91

    Article  Google Scholar 

  • Andronico D, Scollo S, Cristaldi A (2015) Unexpected hazards from tephra fallouts at Mt Etna: the 23 November 2013 lava fountain. J Volcanol Geotherm Res 304:118–125

    Article  Google Scholar 

  • Büttner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from molten fuel coolant interaction experiments. J Geophys Res Solid Earth 107:ECV 5–1 - 5–14

  • Büttner R, Dellino P, Raue H, Sonder I, Zimanowski B (2006) Stress-induced brittle fragmentation of magmatic melts: theory and experiments. J Geophys Res Solid Earth 111, https://doi.org/10.1029/2005JB003958

  • Büttner R, Dellino P, Zimanowski B (1999) Identifying magma-water interaction from the surface features of ash particles. Nature 401:688–690

    Article  Google Scholar 

  • Büttner R, Zimanowski B, Blumm J, Hagemann L (1998) Thermal conductivity of a volcanic rock material (olivine-melilitite) in the temperature range between 288 and 1470 K. J Volcanol Geotherm Res 80:293–302

    Article  Google Scholar 

  • Caffier I (1998). Investigations on the fragmentation of magmatic melt by expanding gas (Unpublished master’s dissertation). Physikalisch-Vulkanologisches Labor, Institut für Geologie & Physikalisches Institut, Julius-Maximilians-Universität, Würzburg, Germany.

  • Calvari S, Cannavò F, Bonaccorso A, Spampinato L, Pellegrino AG (2018) Paroxysmal explosions, lava fountains and ash plumes at Etna Volcano: eruptive processes and hazard implications. Front Earth Sci 6, https://doi.org/10.3389/feart.2018.00107

  • Cannata CB, De Rosa R, Donato P, Donato S, Lanzafame G, Mancini L, Houghton BF (2019) First 3D imaging characterization of Pele’s hair from Kilauea volcano (Hawaii). Sci Rep 9:1711

    Article  Google Scholar 

  • Cashman KV, Scheu B (2015) Chapter 25 - magmatic fragmentation - In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) The encyclopedia of volcanoes (Second Edition). Academic Press, Amsterdam, pp 459–471

  • Clasen C, Phillips PM, Palangetic L, Vermant J (2012) Dispensing of rheologically complex fluids: the map of misery. AIChE J 58:3242–3255

    Article  Google Scholar 

  • Comida PP, Ross P-S, Zimanowski B, Büttner R, Dürig T (2021) Raw_SEM_images_juvenile_pyroclasts_lava_fountains_Comida_et_al_2021 (Version 1, August 2, 2021), https://doi.org/10.5281/zenodo.5153404

  • Comida PP, Ross P-S, Dürig T, White JDL, Lefebvre N (2022a) Standardized analysis of juvenile pyroclasts in comparative studies of primary magma fragmentation; 2. Choice of size fractions and method optimization. Bull Volc. https://doi.org/10.1007/s00445-021-01517-5

  • Comida PP, Ross P-S, Zimanowski B, Büttner R, Sonder I (2022b) Liquid jet breakup regimes in lava fountains. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2022.107609

    Article  Google Scholar 

  • Corsaro RA, Andronico D, Behncke B, Branca S, Caltabiano T, Ciancitto F, Cristaldi A, De Beni E, La Spina A, Lodato L, Miraglia L, Neri M, Salerno G, Scollo S, Spata G (2017) Monitoring the December 2015 summit eruptions of Mt. Etna (Italy): implications on eruptive dynamics. J Volcanol Geotherm Res 341:53–69

    Article  Google Scholar 

  • Dellino P, La Volpe L (1995) Fragmentation versus transportation mechanisms in the pyroclastic sequence of Monte Pilato-Rocche Rosse (Lipari, Italy). J Volcanol Geotherm Res 64:211–231

    Article  Google Scholar 

  • Dellino P, Gudmundsson MT, Larsen G, Mele D, Stevenson JA, Thordarson T, Zimanowski B (2012a) Ash from the Eyjafjallajökull eruption (Iceland): fragmentation processes and aerodynamic behavior. J Geophys Res Solid Earth 117, https://doi.org/10.1029/2011JB008726

  • Dürig T, Bowman MH, White JD, Murch A, Mele D, Verolino A, Dellino P (2018) PARTIcle Shape ANalyzer PARTISAN–an open source tool for multi-standard two-dimensional particle morphometry analysis. Ann Geophys-Italy 61:31

    Google Scholar 

  • Dürig T, Mele D, Dellino P, Zimanowski B (2012a) Comparative analyses of glass fragments from brittle fracture experiments and volcanic ash particles. Bull Volc 74:691–704

    Article  Google Scholar 

  • Dürig T, Sonder I, Zimanowski B, Beyrichen H, Büttner R (2012b) Generation of volcanic ash by basaltic volcanism. J Geophys Res 117:B01204

    Google Scholar 

  • Dürig T, White JDL, Murch AP, Zimanowski B, Büttner R, Mele D, Dellino P, Carey RJ, Schmidt LS, Spitznagel N (2020a) Deep-sea eruptions boosted by induced fuel–coolant explosions. Nature Geosci 13:498–503. https://doi.org/10.1038/s41561-020-0603-4

    Article  Google Scholar 

  • Dürig T, White JDL, Zimanowski B, Büttner R, Murch A, Carey RJ (2020b) Deep-sea fragmentation style of Havre revealed by dendrogrammatic analyses of particle morphometry. Bull Volc 82:article 67. https://doi.org/10.1007/s00445-020-01408-1

  • Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71:036601

    Article  Google Scholar 

  • Elgowainy A, Ashgriz N (1997) The Rayleigh-Taylor instability of viscous fluid layers. Phys Fluids 9:1635–1649

    Article  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos River bar: a study in the significance of grain size parameters. J Sedim Res 27:3–26

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Heiken G (1972) Morphology and petrography of volcanic ashes. Geol Soc Am Bull 83:1961–1988

    Article  Google Scholar 

  • Hobiger M, Sonder I, Büttner R, Zimanowski B (2011) Viscosity characteristics of selected volcanic rock melts. J Volcanol Geotherm Res 200:27–34

    Article  Google Scholar 

  • Houghton BF, Taddeucci J, Andronico D, Gonnermann H, Pistolesi M, Patrick MR, Orr TR, Swanson D, Edmonds M, Gaudin D (2016) Stronger or longer: discriminating between Hawaiian and Strombolian eruption styles. Geology 44:163–166

    Article  Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volc 51:451–462

    Article  Google Scholar 

  • Inman DL (1952) Measures for describing the size distribution of sediments. J Sediment Res 22:125-145

  • Jones TJ, Reynolds CD, Boothroyd SC (2019) Fluid dynamic induced break-up during volcanic eruptions. Nat Commun 10:3828

    Article  Google Scholar 

  • Jordan SC, Dürig T, Cas RAF, Zimanowski B (2014) Processes controlling the shape of ash particles: results of statistical IPA. J Volcanol Geotherm Res 288:19–27

    Article  Google Scholar 

  • Koopmann A (2004) Magma mingling: die hydrodynamische Genese magmatischer Dispersionen. Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius- Maximilans- Universität Würzburg, 148 pp

  • La Spina G, Arzilli F, Llewellin EW, Burton MR, Clarke AB, de’ Michieli Vitturi M, Polacci M, Hartley ME, Di Genova D, Mader HM (2021) Explosivity of basaltic lava fountains is controlled by magma rheology, ascent rate and outgassing. Earth Planet Sc Lett 553:116658

    Article  Google Scholar 

  • Latutrie B, Ross P-S (2020) Phreatomagmatic vs magmatic eruptive styles in maar-diatremes: a case study at Twin Peaks, Hopi Buttes volcanic field, Navajo Nation, Arizona. Bull Volc 82:article 28

  • Lefebvre AH, McDonell VG (2017) Atomization and sprays. CRC press, Boca Raton, 300 p. https://doi.org/10.1201/9781315120911

  • Le Gal A, Grange B, Gueguen R, Donovan M, Peroy J-Y, Flamant G (2020) Particle flow and heat transfer in fluidized bed-in-tube solar receivers. AIP Conf Proc 2303:070002

    Article  Google Scholar 

  • Mangan MT, Cashman KV (1996) The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. J Volcanol Geotherm Res 73:1–18

    Article  Google Scholar 

  • Moitra P, Sonder I, Valentine GA (2018) Effects of size and temperature-dependent thermal conductivity on the cooling of pyroclasts in air. Geochem Geophy Geosy 19:3623–3636

    Article  Google Scholar 

  • Mueller SB, Houghton BF, Swanson DA, Fagents SA, Klawonn M (2018) Intricate episodic growth of a Hawaiian tephra deposit: case study of the 1959 Kīlauea Iki eruption. Bull Volc 80:article 73

  • Mueller SB, Houghton BF, Swanson DA, Poret M, Fagents SA (2019) Total grain size distribution of an intense Hawaiian fountaining event: case study of the 1959 Kīlauea Iki eruption. Bull Volc 81:article 43

  • Murata KJ, Richter DH (1966) Chemistry of the lavas of the 1959–60 eruption of Kīlauea Volcano, Hawai‘i. In: The 1959–60 eruption of Kīlauea volcano, Hawai‘i. US Geol Sury Prof Pap 537-A:A1–A26

  • Neal CA, Brantley SR, Antolik L et al (2019) The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 363:367–374

    Article  Google Scholar 

  • Porritt L, Russell J, Quane S (2012) Pele’s tears and spheres: examples from Kilauea Iki. Earth Planet Sci Lett 333:171–180

    Article  Google Scholar 

  • Recktenwald G (2006) Transient, one-dimensional heat conduction in a convectively cooled sphere. MATLAB code /http://www.webcitation.org/60nDyv3YyS

  • Reitz RD, Bracco VF (1986) Chapter 10 - mechanism of breakup of round liquid jets – In: Lin S, Wang C (1986) Encyclopedia of fluid mechanics. Ed. Cheremisioff, Gulf. Houston, pp 223–249

  • Richter DH, Eaton JP, Murata KJ, Ault WU, Krivoy HL (1970) Chronological narrative of the 1959–60 eruption of Kīlauea volcano, Hawai‘i. In: The 1959–60 eruption of Kīlauea volcano, Hawai‘i. US Geol Sury Prof Pap 537-E:E1–E73

  • Richter DH, Murata KJ (1966) Petrography of the lavas of the 1959–60 eruption of Kilauea Volcano, Hawaii. In: The 1959–60 eruption of Kīlauea volcano, Hawai‘i. US Geol Sury Prof Pap 537-D:D1–D12

  • Ross P-S, Dürig T, Comida PP, Lefebvre NS, White JDL, Andronico D, Thivet S, Eychenne J, Gurioli L (2022) Standardized analysis of juvenile pyroclasts in comparative studies of primary magma fragmentation; 1. Overview and workflow. Bull Volc. https://doi.org/10.1007/s00445-021-01516-6

  • Sharp DH (1984) An overview of Rayleigh-Taylor instability. Physica D 12:3–18

    Article  Google Scholar 

  • Shimozuru D (1994) Physical parameters governing the formation of Pele’s hair and tears. Bull Volc 56:217–219

    Article  Google Scholar 

  • Sonder I, Zimanowski B, Büttner R (2006) Non-Newtonian viscosity of basaltic magma. Geophys Res Lett 33, https://doi.org/10.1029/2005GL024240

  • Stovall WK, Houghton BF, Gonnermann H, Fagents SA, Swanson DA (2011) Eruption dynamics of Hawaiian-style fountains: the case study of episode 1 of the Kīlauea Iki 1959 eruption. Bull Volc 73:511–529

    Article  Google Scholar 

  • Taddeucci J, Edmonds M, Houghton B, James MR, Vergniolle S (2015) Chapter 27 - Hawaiian and Strombolian eruptions A2 - In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) The encyclopedia of volcanoes (Second Edition). Academic Press, Amsterdam, pp 485–503

  • Taddeucci J, Cimarelli C, Alatorre-Ibargüengoitia MA, Delgado-Granados H, Andronico D, Del Bello E, Scarlato P, Di Stefano F (2021) Fracturing and healing of basaltic magmas during explosive volcanic eruptions. Nat Geosci 14:248–254

    Article  Google Scholar 

  • Wadsworth FB, Witcher T, Vasseur J, Dingwell DB, Scheu B (2019) When does magma break? In: Gottsmann J, Neuberg J, Scheu B (eds) Volcanic unrest: from science to society. Springer International Publishing, pp 171–184

  • Walker G, Croasdale R (1971) Characteristics of some basaltic pyroclastics. Bull Volc 35:303–317

    Article  Google Scholar 

  • White J, Houghton B (2006) Primary volcaniclastic rocks. Geology 34(8):677–680

    Article  Google Scholar 

  • White JDL, Valentine GA (2016) Magmatic versus phreatomagmatic fragmentation: absence of evidence is not evidence of absence. Geosphere 12:1478–1488

    Article  Google Scholar 

  • Zimanowski B, Büttner R, Lorenz V, Häfele HG (1997) Fragmentation of basaltic melt in the course of explosive volcanism. J Geophys Res Solid Earth 102:803–814

    Article  Google Scholar 

  • Zimanowski B, Fröhlich G, Lorenz V (1991) Quantitative experiments on phreatomagmatic explosions. J Volcanol Geotherm Res 48:341–358

    Article  Google Scholar 

Download references

Acknowledgements

We thank Sebastian Mueller, Bruce Houghton, and Wendy Cockshell for providing the Kīlauea Iki 1959 samples. We thank Jacopo Taddeucci and Lucy Porritt for their comments on a draft of this paper. We thank Ulrich Küppers and an anonymous reviewer for constructive journal reviews and guest editor Benjamin Andrews for efficient handling.

Funding

This study was funded by Discovery Grants to PSR from the Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN-2015–06782 and RGPIN-2020–06349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Comida.

Additional information

Editorial responsibility: B.J. Andrews

This paper constitutes part of a topical collection: What pyroclasts can tell us.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comida, P.P., Ross, PS., Zimanowski, B. et al. Controls on juvenile ash morphologies in lava fountains: insights from laboratory experiments. Bull Volcanol 85, 23 (2023). https://doi.org/10.1007/s00445-023-01637-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-023-01637-0

Keywords

Navigation