Skip to main content

Advertisement

Log in

A solidified lava lake in an explosion crater within granitic basement, SW Japan

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract  

The Pleistocene Tawanouchi basalt of SW Japan formed as a lava lake in an explosion crater within granitic basement. Volcanic activity in the Tawanouchi area started with a phreatomagmatic eruption, based on the lithofacies present near the crater and between the granite basement and the lava. The Tawanouchi basalt lava lake forms an inverted elliptical frustum with upper dimensions of approximately 340 m × 550 m, tapering downward to a depth of more than 170 m. Thermal history was evaluated based on differences in sizes and shapes of columnar joints from the margins of the lava to its interior. The vent lay near the center of the lava mass, based on deformation and trends of columnar joints in lava associated with clastic deposits. Lava repeatedly upwelled and flowed back into the vent. Mg/(Mg + Fe) ratios of some groundmass clinopyroxenes in the basalts overlap those of phenocryst cores, suggesting that less-differentiated lava was injected into more differentiated and semi-solidified lava. Paleomagnetic data show that the basement granite was heated to 530 °C or more 90 cm - 155 cm away from the contact with the lava. Numerical simulation of the thermal effect on the basement granite from the lava indicates that the lava lake with an initial temperature of 1150°C took more than 20 years to cool below 1100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References 

  • Barclay J, Carmichael ISE (2004) A hornblende basalt from western Mexico: water-saturated phase relations constrain a pressure-temperature window of reputability. J Petrol 45:485–506

    Article  Google Scholar 

  • Barth GA, Kleinrock MC, Helz RT (1994) The magma body at Kilauea Iki lava lake: potential insights into mid-ocean ridge magma chambers. J Geophys Res 99:7199–7217

    Article  Google Scholar 

  • Bates R, Jackson JA (1987) Glossary of geology, 3rd edn. Am Geol Inst, Alexandria pp 788

  • Blaikie TN, Ailleres L, Cas RAF, Betts PG (2012) Three-dimensional potential field modelling of a multi-vent maar-diatreme — the Lake Coragulac maar, Newer volcanics province, south-eastern Australia. J Volcanol Geothem Res 235–236:70–83. https://doi.org/10.1016/j.jvolgeores.2012.05.002

  • Büchner J, Tietz O (2012) Reconstruction of the Landeskrone scoria cone in the Lusatian volcanic field, Eastern Germany — insights on a large sized monogenetic volcano, long-lasting degradation of volcanic edifices and implications for the landscape evolution. Geomorphology 151–152:175–187. https://doi.org/10.1016/j.geomorph.2012.01.027

    Article  Google Scholar 

  • Büchner J, Tietz O, Suhr P, Loges A, Franz G (2015) Field trip 3: Cenozoic Lausitz volcanism and its basement. – In: Röhling H-G (Hrsg.): GeoBerlin 2015. Dynamische Erde - von Alfred Wegener bis heute und in die Zukunft. Exkursionsführer / Dynamic Earth - from Alfred Wegener to today and beyond. Excursion guide. – Exkurs.f. u. Veröfftl. DGG, 255: S. 17–34; Hannover

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford Univ Press, Oxford, UK, p 310

    Google Scholar 

  • DeGraff JM, Aydin A (1987) Surface morphology of columnar joints and its significance to mechanics and direction of joint growth. Geol Soc Am Bull 99:605–617

    Article  Google Scholar 

  • DeGraff JM, Aydin A (1993) Effect of thermal regime on growth increment and spacing of contraction joints in basaltic lava. J Geophys Res 98:6411–6430

    Article  Google Scholar 

  • Duffield WA (1972) A naturally occurring model of global plate tectonics. J Geophys Res 77:2543–2555

  • Delaney PT (1982) Rapid intrusion of magma into wet rock: groundwater flow due to pore pressure increases. J Geophys Res 87:7739–7756

    Article  Google Scholar 

  • Editorial Board of Geological Map of Shimane Prefecture (new version) (1997) Geological map of Shimane Prefecture (new version) scale 1:200,000, Naigai Map Co., Ltd.

  • Fisher RV (1979) Models for pyroclastic surges and pyroclastic flows. J Volcanol Geotherm Res 6:305–318

    Article  Google Scholar 

  • Francis PW, Oppenheimer C, Stevenson D (1993) Endogenous growth of persistently active volcanoes. Nature 366:554–557

    Article  Google Scholar 

  • Grossenbacher KA, McDuffie SM (1995) Conductive cooling of lava: columnar joint diameter and stria width as functions of cooling rate and thermal gradient. J Volcanol Geotherm Res 69:95–103

    Article  Google Scholar 

  • Harris AJL (2009) The pit-craters and pit-crater-filling lavas of Masaya volcano. Bull Volcanol 71:541–558. https://doi.org/10.1007/s00445-008-0241-y

    Article  Google Scholar 

  • Harris AJL, Flynn LP, Rothery DA, Oppenheimer C, Sherman SB (1999) Mass flux measurements at active lava lakes: implication for magma recycling. JGR 104(B4):7117–7136

    Article  Google Scholar 

  • Harris AJL, Carniel R, Jones J (2005) Identification of variable convective regimes at Erta Ale Lava Lake. J Volcanol Geotherm Res 142:207–223

    Article  Google Scholar 

  • Harris AJL, Wright R (1999) Remote monitoring of Mount Erebus volcano, Antarctica, using polar orbiters: progress and prospects. Int J Remote Sensing 20:3051–3071

    Article  Google Scholar 

  • Heliker C, Swanson DA, Takahashi TJ (2003) The Pu‘u ‘Ö‘ö-Küpaianaha eruption of Kïlauea volcano, Hawaii: the first 20 years. US Geol Survey Prof Paper 1676

  • Helz RT (1980) Crystallization history of Kilauea Iki lava lake, as seen in drill core recovered in 1967–1979. Bull Volcanol 43:675–701

    Article  Google Scholar 

  • Helz RT, Thornber CR (1987) Geothermometry of Kilauea Iki lava lake. Hawaii Bull Volcanol 49:651–668

    Article  Google Scholar 

  • Helz RT (1988) Drilling report and core logs for the 1988 drilling of Kilauea Iki lava lake, Kilauea volcano, Hawaii, with summary descriptions of the occurrence of foundered crust and fractures in the drill core. US Geol Survey Open-file Report 93–15

  • Helz RT (1993) Drilling report and core logs for the 1988 drilling of Kilauea Iki Lava Lake, Kilauea Volcano, Hawaii, with summary descriptions of the occurrence of foundered crust and fractures in the drill core. US Geol Survey Open-file Report 93–13

  • Helz RT (2009) Processes active in mafic magma chambers: the example of Kilauea Iki Lava Lake. Hawaii Lithos 111:37–46

    Article  Google Scholar 

  • Hetényi G, Taisue B, Garel F, Médard É, Bosshard S, Mattsson H (2012) Scales of columnar jointing in igneous rocks: field measurements and controlling factors. Bull Volcanol 74:457–284. https://doi.org/10.1007/s00445-011-0534-4

    Article  Google Scholar 

  • Jaggar TA (1947) Origin and development of craters. Geol Soc Am Mem 21:1–508

    Google Scholar 

  • Jellinek AM, Kerr RC (2001) Magma dynamics, crystallization, and chemical differentiation of the 1959 Kilauea Iki lava lake, Hawaii, revisited. J Volcanol Geotherm Res 110:235–263

    Article  Google Scholar 

  • Kimura JI, Kunikiyo T, Osaka I, Nagao T, Yamauchi S, Kakubuchi S, Okada S, Fujibayashi N, Okada R, Murakami H, Kusano S, Umeda K, Hayashi S, Ishimura T, Ninomiya A, Tanase A (2003) Late Cenozoic volcanic activity in the Chugoku area, southwest Japan arc during back-arc basin opening and reinitiation of subduction. The Island Arc 12:22–45

    Article  Google Scholar 

  • Kirschvink JL (1980) The least-squares line and plane and the analysis of paleomagnetic data. Geophys Res Astron Soc 62:699–718

    Article  Google Scholar 

  • Kristjansson L (1985) Magnetic and thermal effects of dike intrusions in Iceland. J Geophys Res 90:10129–10135

    Article  Google Scholar 

  • Latutrie B, Ross P-S (2020) Phreatomagmatic vs magmatic eruptive styles in maar-diatremes: a case study at Twin Peaks, Hopi Buttes volcanic field, Navajo Nation. Arizona Bull Volcanol 82:28. https://doi.org/10.1007/s00445-020-1365-y

    Article  Google Scholar 

  • Lavine A, Aalto KR (2002) Morphology of a crater-filling lava lake margin, the Peninsula tuff cone, Tule Lake National Wildlife Refuge, California: implication for formation of peperite textures. J Volcanol Geotherm Res 114:7–163

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

  • Lev E, Ruprecht P, Oppenheimer C, Peters N, Patrick M, Hernández PA, Spampinato L, Marlow J (2019) A global synthesis of lava lake dynamics. J Volcanol Geotherm Res 381:16–31. https://doi.org/10.1016/j.jvolgeores.2019.04.0100377-0273

    Article  Google Scholar 

  • Lodge RWD, Lescinsky DT (2009) Anisotropic stress accumulation in cooling lava flows and resulting fracture patterns: insights from starch-water desiccation experiments. J Volcanol Geotherm Res 185:323–336

    Article  Google Scholar 

  • Lutz H, Lorenz V, Engel T, Häfner F, Haneke J (2013) Paleogene phreatomagmatic volcanism on the western main fault of the northern Upper Rhine Graben (Kisselwörth diatreme and Nierstein-Astheim Volcanic System, Germany). Bull Volcanol 75:741. https://doi.org/10.1007/s00445-403-0741-2

    Article  Google Scholar 

  • Lyle P (2000) The eruption environment of multi-tiered columnar basalt lava flows. J Geol Soc London 157:715–722

    Article  Google Scholar 

  • Martin U, Németh K (2004) Peperite lava lake-fed sills at Sag-hegy, western Hungary: a complex interaction of wet tephra ring and lava. Geol Soc London Spec Pub 234:33–50

    Article  Google Scholar 

  • Martin U, Németh K (2007) Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary. J Volcanol Geotherm Res 159:164–178. https://doi.org/10.1016/j.jvolgeores.2006.06.010

    Article  Google Scholar 

  • Martin U, Németh K, Auer A, Breitkreuz C (2003) Mioc-Pliocene phreatomagmatic volcanism in a fluvio-lacustrine basin in western Hungary. GeoLines 15:84–90

    Google Scholar 

  • Melekhova E, Blundy J, Robertson R, Humphreys MCS (2015) Experimental evidence for polybaric differentiation of primitive arc basalt beneath St. Vincent. Lesser Antilles J Petrol 56:161–192

    Article  Google Scholar 

  • Moore JG, Evans BW (1967) The role of olivine in the crystallization of the prehistoric Makaopuhi tholeiitic lava lake. Hawaii Contr Mineral Petrol 15:202–223

    Article  Google Scholar 

  • Müller G (1998) Starch columns: analog model for basalt columns. J Geophys Res 103:239–253

  • Németh K, Martin U (2007) Shallow sill and dike complex in western Hungary as a possible feeding system of phreatomagmatic volcanoes in “soft-rock” environment. J Volcanol Geotherm Res 159:138–152. https://doi.org/10.1016/j.jvolgeores.2006.06.014

    Article  Google Scholar 

  • Németh K, Cronin SJ (2008) Volcanic craters, pit craters and high-level magma-feeding systems of a mafic island-arc volcano: Ambrym, Vanuatu, South Pacific. Geol Soc London Special Publication 302:87–102

    Article  Google Scholar 

  • Nishida K, Imaoka T, Kiminami K, Nagamatsu Y, Iizumi S (2013) Marked change of Sr-Nd isotopic compositions of granitoids in San’in Belt of SW Japan and Gyengsang Basin of Korea during the latest Cretaceous, and geologic significance. J Geol Soc Japan 119:229–248

    Article  Google Scholar 

  • Oppenheimer C, Francis P (1998) Implications of longeval lava lakes for geomorphological and plutonic processes at Erta ’Ale volcano, north Afar. J Volcanol Geotherm Res 80:101–111

  • Oppenheimer C, Yirgu G (2002) Thermal imaging of an active lava lake: Erta ’Ale volcano. Ethiopia Int J Remote Sens 23:4777–4782

    Article  Google Scholar 

  • Otofuji Y, Matsuda T (1983) Paleomagnetic evidence for the clockwise rotation for Southwest Japan. Earth Planet Sci Lett 62:349–359

    Article  Google Scholar 

  • Peck DL (1978) Cooling and vesiculation of Alae lava lake, Hawaii. US Geol Survey Prof Paper 935-B

  • Peck DL, Wright T, Moor JG (1966) Crystallization of tholeiitic basalt in Alae Lava Lake. Hawaii Bull Volcanol 29:629–655

    Article  Google Scholar 

  • Peck DL, Minakami T (1968) The formation of columnar joints in the Upper part of Kilauean lava lakes. Hawaii Geol Soc Am Bull 79:1151–1166. https://doi.org/10.1130/0016-7606(1968)79[1151:TFOCJI]2.0.CO;2

    Article  Google Scholar 

  • Peck DL, Kinoshita WT (1978) The eruption of august 1963 and the formation of Alae lava lake hawaii (Solidification of Alae lava lake, Hawaii). US Geol. Survey Prof Paper 935-A

  • Peck DL, Wright T, Decker RW (1979) The lava lake of Kilauea. Sci Am 241:415–422

    Article  Google Scholar 

  • Pedrazzi D, Bolós X, Martí J (2014) Phreatomagmatic volcanism in complex hydrogeological environments: La Crosa de Sant Dalmai maar (Catalan Volcanic Zone, NE Spain). Geosphere 10:170–184. https://doi.org/10.1130/GES00959.1

    Article  Google Scholar 

  • Pedrazzi D, Cerda D, Geyer A, Martí J, Aulinas M, Planagumà L (2022) Stratigraphy and eruptive history of the complex Puig de La Banya del Boc monogenetic volcano, Garrotxa Volcanic Field. J Volcanol Geotherm Res 423:138–152. https://doi.org/10.1016/j.jvolgeores.2021.107460

    Article  Google Scholar 

  • Petronis MS, Awdankiewicz M, Valenta J, Rapprich V, Zebrowski JP, Karim E (2021) Eruptive and magma feeding system evolution of Sośnica Hill Volcano (Lower Silesia, SW Poland) revealed from volcanological, geophysical, and rock magnetic data. J Volcanol Geotherm Res 419:1–26. https://doi.org/10.1016/j.jvolgeores.2021.1073670377-0273

    Article  Google Scholar 

  • Picher DH, Moore JG (1966) Petrology of the Kilauea Iki lava lake Hawaii. US Geol. Survey Prof Paper 537-B

  • Pineda-Velasco I, Kitagawa H, Nguyen TT, Kobayashi K, Nakamura E (2018) Production of High-Sr andesite and dacite magmas by melting of subducting oceanic lithosphere at propagating lab tears. J Geophy Res: Solid Earth 123:3698–3728. https://doi.org/10.1029/2017JB015066

    Article  Google Scholar 

  • Richter DH, Eaton JP, Murata KJ, Ault WU, Krivoy HI (1970) Chronological narrative of the 1959–60 eruption of Kilauea Volcano, Hawaii. US Geol Survey Prof Paper 537-E. https://doi.org/10.3133/pp537E

  • Ross P-S, Delpit S, Haller MJ, Németh K, Corbella H (2011) Influence of the substrate on maar-diatreme volcanoes — an example of a setting from the Pali Aike volcanic field, Argentina. J Volcanol Geotherm Res 201:253–271. https://doi.org/10.1016/j.jvolgeores2010.07.018

    Article  Google Scholar 

  • Ryan MP, Sammis CG (1978) Cyclic fracture mechanisms in cooling. Geol Soc Am Bull 89:1295–1308

    Article  Google Scholar 

  • Rymer H, van Wyk de Vries B, Stix J, Williams-Jones G (1998) Pit crater structure and processes governing persistent activity at Masaya Volcano Nicaragua Bull Volcanol 59:345–355

    Article  Google Scholar 

  • Sawada Y, Gholamreza Z, Sakai T, Itaya T, Yagi K, Imaizumi M, Majid Mirzaie Ataabadi MM, Fortelius M (2016) K-Ar ages and petrology of the Late Miocene pumices from the Maragheh Formation, northwest Iran. Palaeobio Palaoenv 96(3) https://doi.org/10.1007/s12549-016-0232-5

  • Sawada Y, Mishiro Y, Imaoka T, Yoshida K, Inada R, Hisai K, Kondo H, Hyodo M (2013) K-Ar ages and paleomagnetism of the Miocene in the Izumo Basin, Shimane Prefecture. J Geol Soc Japan 119:267–284

    Article  Google Scholar 

  • Sawada Y, Nakao F, Imayama T, Benino Y (2018) Analytical method and accuracy of X-ray fluorescence analysis at Okayama University. Bull Res Inst Nat Sci Okayama Univ Sci 44:51–54

    Google Scholar 

  • Schminke HU (1967) Stratigraphy and petrography of four upper Yakima Basalt flows in south-central Washington. Geol Soc Am Bull 78:319–330. https://doi.org/10.1130/0016-7606(1967)78[319:FTAPIS]2.0.CO;2

    Article  Google Scholar 

  • Schmincke HU, Fisher RV, Waters AC (1973) Antidune and chute and pool structures in the base surge deposits of the Laacher Sea area, Germany. Sedimentology 20:553–574

    Article  Google Scholar 

  • Sims KWW, Aster R, Gaetani G, Blichert -Toft J, Phillips1 EH, Wallace PJ, Mattioli GS, Rasmussen D, Boyd ES (2021) Mount Erebus volcano: an exceptional natural laboratory for studying alkaline magmatism and open-conduit volcano behavior. Smellie et al. (eds) “Volcanism in Antarctica: 200 million years of subduction, rifting and continental break-up” Geol Soc London Memoirs 55: 695–739

  • Stovall WK, Houghton BF, Harris AJL, Swanson D (2009) Features of lava lake filling and draining and their implications for eruption dynamics. Bull Volcanol 71:767–780. https://doi.org/10.1007/s00445-009-0263-0

    Article  Google Scholar 

  • Swanson DA, Duffield WA, Jackson DB, Peterson DW (1972) The complex filling of Alae crater, Kilauea volcano. Hawaii Bull Volcanol 36:105–126

    Article  Google Scholar 

  • Swanson DA, Duffield WA, Jackson DB, Peterson DW (1979) Chronological narrative of the 1969–71 Mauna Ulu eruption of Kilauea volcano, Hawaii. US Geol Survey Prof Paper 1056

  • Tazieff H (1977) An exceptional eruption: Mt Nyiragongo, Jan 10th 1977. Bull Volcanol 30:189–200

    Article  Google Scholar 

  • Tazieff H (1994) Permanent lava lakes—observed facts and induced mechanisms. J Volcanol Geotherm Res 63:3–11

    Article  Google Scholar 

  • Tedesco D, Vaselli O, Papale P, Carn SA, Voltaggio M, Sawyer GM, Durieux J, Kasereka M, Tassi F (2007) January 2002 volcano-tectonic eruption of Nyiragongo volcano, Democratic Republic of Congo. J Grophy Res Solid Earth 112:B9. https://doi.org/10.1029/2006JB004762,20

    Article  Google Scholar 

  • Toramaru A, Matsumoto T (2004) Columnar joint morphology and cooling rate: a starch-water mixture experiment. J Geophys Res 109:B02205. https://doi.org/10.1029/2003JB002686

    Article  Google Scholar 

  • Tottori Prefecture (1966) Geological map of Tottori Prefecture, scale 1:200,000

  • Uto K (1989) Neogene volcanism of Southwest Japan: its time and space on K-Ar dating. Doctoral thesis, Univ Tokyo, 184 pp

  • Vinet N, Higgins MD (2011) What can crystal size distributions and olivine compositions tell us about solidification processes inside Kilauea Iki lava lake, Hawaii? J Volcanol Geotherm Res 208:136–162

    Article  Google Scholar 

  • Walker GPL (1988) Three Hawaiian calderas: an origin through loading by shallow intrusions? J Geophys Res 93:14773–14784

    Article  Google Scholar 

  • Walker GPL (1990) Geology and volcanology of the Hawaiian Islands. Pacific Sci 44:315–347

    Google Scholar 

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29

    Article  Google Scholar 

  • Witham F, Llewellin EW (2006) Stability of lava lakes. J Volcanol Geotherm Res 158:321–332

    Article  Google Scholar 

  • Wright TL, Kinoshita WT, Peck DP (1968) March 1965 eruption of Kilauea volcano and the formation of Makaopuhi Lava Lake. J Geophys Res 73:3181–3205. https://doi.org/10.1029/JB073i010p03181

    Article  Google Scholar 

  • Wright TL, Okamura RT (1977) Cooling and crystallization of tholeiitic basalt (1965) Makaopuhi lava lake, Hawaii. US Geol Survey Prof Paper 1004

  • Wright TL, Peck DL (1978) Crystallization and differentiation of the Alac Lava Lake, Hawaii. US Geol Survey Prof Paper 935-C: 1–20

  • Závada P, Dědeček P, Mach K, Lexa O, Potužák M (2011) Emplacement dynamics of phonolite magma into maar-diatreme structures — correlation of field, thermal modeling and AMS analogue modeling data. J Volcanol Geotherm Res 201:210–226

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the following persons and organizations: Dr. Barry Roser and Dr. Hiroaki Sato for the valuable discussion and critical reading of the manuscript; Dr. Hideki Mukoyoshi and Dr. Tetsuo Kobayashi for the valuable comments; Chugokubussan Co. Ltd., Kiyokogyo Co. Ltd., Mr. Kazushige Murata, Prof. Takao Tokuoka, and Mr. Ryuhei Okada for the provision of materials; the Yasugi City Board of Education for facilitating surveys; Mr. Asuka Nagami for the aerial views using a drone; and Prof. K. Németh, an anonymous reviewer, associate editor Prof. P.-S. Ross, and Prof. A. J. L. Harris for their very helpful reviews and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Sawada.

Additional information

Editorial responsibility: P-S. Ross

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6.06 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawada, Y., Uno, K., Sakai, T. et al. A solidified lava lake in an explosion crater within granitic basement, SW Japan. Bull Volcanol 85, 26 (2023). https://doi.org/10.1007/s00445-023-01634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-023-01634-3

Keywords

Navigation