Skip to main content
Log in

Biotite as an indicator of post-eruptive cryptic alteration in the Battleship Rock Ignimbrite, Valles Caldera, NM, USA

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Battleship Rock Ignimbrite of the East Fork Member of the Valles Rhyolite (USA) consists of a variably welded compound cooling unit emplaced in the southern part of the Valles Caldera at 74 ka. At the type locality, the unit was deposited in a narrow paleocanyon and is glassy throughout, with little petrographic evidence for post-eruptive alteration. Biotites from different zones in the ignimbrite at this location, and associated lavas and fallout deposits of the East Fork Member, frequently exhibit low analytical totals (< 94 wt%; by electron microprobe) that are correlated with potassium (K) depletion and enriched in lithium (Li). These variations between samples are systematically related to the welding profile of the ignimbrite. Biotites with low totals are accompanied by groundmass glass with low δ18O, which requires high-temperature interaction with meteoric water. The low totals, K depletion, and Li enrichment are therefore attributed to a brief episode of meteoric-hydrothermal alteration of the cooling tuff immediately following emplacement. The duration of the episode is estimated to be on the order of months or less, constrained by Cs, Rb, and Sr mobility in glass. Additional variations in glass and biotite chemistry are identified as primary, and offer an avenue to deciphering the complex event stratigraphy of the eruption, with implications for hazard potential of future rhyolitic eruptions from Valles Caldera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alcorn R, Panter KS, Gorsevski PV (2013) A GIS-based volcanic hazard and risk assessment of eruptions sourced within Valles Caldera, New Mexico. J Volcanol Geotherm Res 267:1–14

    Article  Google Scholar 

  • Alley RB, Cuffey KM (2001) Oxygen- and hydrogen-isotopic ratios of water in precipitation: beyond paleothermometry. Rev Mineral Geochem 43:527–553

    Article  Google Scholar 

  • Álvarez-Amado F, Rosales M, Godfrey L, Poblete-González C, Morgado E, Espinoza M, Hidalgo-Gajardo A, Volosky D, Cortés-Aranda J (2022) The role of ignimbrites and fine sediments in the lithium distribution and isotopic fractionation in hyperarid environments: insights from Li-isotopes in the Atacama Desert. J Geochem Expl 241:107062, 17

  • Andersen, K.K. and 48 others, North Greenland Ice Core Project members (2004) High-resolution record of Northerm Hemisphere climate extending into the last interglacial period. Nature 431:147–151

  • Bachmann O (2010) the petrologic evolution and pre-eruptive conditions of the rhyolitic Kos Plateau Tuff (Aegean arc). Cent Eur J Geosci 2:270–305

    Google Scholar 

  • Bailey RA, Smith RL, Ross CS (1969) Stratigraphic nomenclature of volcanic rocks in the Jemez Mountains, New Mexico. US Geol Surv Bull 1274-P, 1–19

  • Bailey RA, Smith RL (1978) Guide to Jemez Mountains and Española Basin. New Mexico Bur. Mines Min Res Circular 163:184–196

    Google Scholar 

  • Bindeman IN, Watts KE, Schmitt AK, Morgan LA, Shanks PWC (2007) Voluminous low δ18O magmas in the late Miocene Heise volcanci field, Idaho: implications for the fate of Yellowstone hotpsot calderas. Geology 35:1019–1022

    Article  Google Scholar 

  • Bindeman IN, Lowenstern JB (2016) Low-δD hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions. Contrib Mineral Petrol 171:89, 24

  • Brindley GW, Zalba PE, Bethke CM (1983) Hydrobiotite, a regular 1:1 interstratification of biotite and vermiculite layers. Amer Mineral 68:420–425

    Google Scholar 

  • Castro JM, Bindeman IN, Tuffen H, Schipper CI (2014) Explosive origin of silicic lava: textural and δD–H2O evidence for pyroclastic degassing during rhyolite effusion. Earth Planet Sci Lett 405:52–61

    Article  Google Scholar 

  • Cole DR, Ohmoto H (1986) Kinetics of isotopic exchange at elevated temperatures and pressures. Rev Mineral 16:41–90

    Google Scholar 

  • Cook GW, Wolff JA, Self S (2016) Estimating the eruptive volume of a large pyroclastic body: the Otowi Member of the Bandelier Tuff, Valles Caldera, New Mexico. Bull Volcanol 76:10, 11 https://doi.org/10.1007/s00445-016-1000-0

  • Criss RE, Taylor HP (1986) Meteoric-hydrothermal systems. Rev Mineral 16:373–424

    Google Scholar 

  • Eichler CM, Spell TL (2020) Petrogenesis of three East Fork Member rhyolites of the Jemez volcanic field, Valles Caldera, New Mexico, USA. J Volcanol Geotherm Res 389:106706, 20

  • Ellis BS, Neukampf J, Bachmann O, Harris C, Forni F, Magna T, Laurent O, Ulmer P (2022) Biotite as a recorder of an exsolved Li-rich volatile phase in upper-crustal silicic magma reservoirs. Geology 50:481–485

    Article  Google Scholar 

  • Ellis BS, Szymanowski D, Harris C, Tollan PME, Neukampf J, Guillong M, Cortes-Calderon EA, Bachmann O (2022) Evaluating the potential of rhyolitic glass as a lithium source for brine deposits. Econ Geol 117:91–105

    Article  Google Scholar 

  • Flesch GD, Anderson AR Jr, Svec HJ (1973) A secondary isotopic standard for 6Li/7Li determinations. Int J Mass Spectrom Ion Phys 12(3):265–272

    Article  Google Scholar 

  • Gardner JN, Goff F, Kelley SA, Jacobs E (2010) Rhyolites and associated deposits of the Valles-Toledo caldera complex. New Mex Geol 32:3–18

    Google Scholar 

  • Gazis C, Taylor HP Jr, Hon K, Tsvetkov A (1996) Oxygen isotope and geochemical evidence for a short-lived, high-temperature hydrothermal event in the Chegem caldera, Caucasus Mountains. Russia J Volcanol Geotherm Res 73:213–244

    Article  Google Scholar 

  • Giordano D, Nichols ARL, Dingwell DB (2005) Glass transition temperatures of natural hydrous melts: a relationship with shear viscosity and implications for the welding process. J Volcanol Geotherm Res 142:105–118

    Article  Google Scholar 

  • Godfrey LV, Chan L-H, Alonso RN, Lowenstein TK, McDonough WF, Houston J, Li J, Bobst A, Jordan TE (2013) The role of climate in the accumulation of lithium-rich brine in the Central Andes. Appl Geochem 38:92–102

    Article  Google Scholar 

  • Goff F, Gardner JN, Reneau SL, Kelley SA, Kempter KA, Lawrence JR (2011) Geologic map of the Valles Caldera, Jemez Mountains, New Mexico. New Mexico Bureau Geol Min Res Geologic Map 79, scale 1:50,000

  • Goff F, Gardner JN (1994) Evolution of a mineralized geothermal system, Valles Caldera, New Mexico. Econ Geol 89:1803–1832

    Article  Google Scholar 

  • Green TH, Pearson NJ (1988) Experimental crystallization of of chevkinite/perrierite from REE-enriched silicate liquids at high pressure and temperature: mineralogical Magazine 52:113–120

  • Griggs RF (1922) The Valley of Ten Thousand Smokes. Natl. Geogr. Soc, Washington, D.C., p 341

    Book  Google Scholar 

  • Grunder AL, Laporte D, Druitt TH (2005) Experimental and textural investigation of welding: effects of compaction, sintering, and vapor-phase crystallization in the rhyolitic Rattlesnake Tuff. J Volcanol Geotherm Res 142:89–104

    Article  Google Scholar 

  • Guillong M, Meier DK, Allan MM, Heinrich CA, Yardley BWD (2008) SILLS: a MATLAB-based program for the reduction of laser ablation ICP–MS data of homogeneous materials and inclusions. Mineral Assoc Can Short Course Vancouver BC 40:328–333

    Google Scholar 

  • Harris C, Compton JS, Bevington SA (1999) Oxygen and hydrogen isotope composition of kaolinite deposits, Cape Peninsula, South Africa: low-temperature, meteoric origin. Econ Geol 94:1353–1366

    Article  Google Scholar 

  • Hildreth W (1977) The magma chamber of the Bishop Tuff: gradients in temperature, pressure and composition. PhD thesis, U. California, Berkeley.

  • Hildreth W, Christiansen RL, O’Neil JR (1984) Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone Plateau volcanic field. J Geophys Res 89:8339–8369

    Article  Google Scholar 

  • Holt EW (2002) 18O/16O evidence for an early, short-lived (~10 yr), fumarolic event in the Topopah Spring Tuff near the proposed highj0-level nuclear waste repository within Yucca Mountain, Nevada, USA. Earth Planet Sci Lett 210:559–573

    Article  Google Scholar 

  • Holt EW, Taylor HP Jr (1998) 18O/16O mapping and hydrogeology of a short-lived (~10 years) fumarolic (> 500 °C) meteoric-hydrothermal event in the upper part of the 0.76 Ma Bishop Tuff outflow sheet. California J Volcanol Geotherm Res 83:115–139

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1988) the generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624

    Article  Google Scholar 

  • Iveson AA, Webster JD, Rowe MC, Neill OK (2019) Fluid-melt race element partitioning behaviour between evolved melts and aqueous fluids: experimental constraints on the magmatic-hydrothermal transport of metals. Chem Geol 516:18–41

    Article  Google Scholar 

  • Izett GA, Obradovich JD (1994) 40Ar/39Ar age constraints for the Jaramillo Normal Subchron and the Matuyama-Brunhes geomagnetic boundary. J Geophys Res 99:2925–2934

    Article  Google Scholar 

  • Jezek PA, Noble DC (1978) Natural hydration and ion exchange of obsidian: an electron microprobe study. Amer Mineral 63:266–273

    Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429

    Article  Google Scholar 

  • Keating GN, Schultz-Fellenz ES, Miller ED (2010) Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations: current state of knowledge and proposed path forward. Los Alamos Nat Lab Tech Rep LA-14426, 38

  • Kelley S, Kempter KA, Goff F, Rampey M, Osburn B, Ferguson CA (2003) Preliminary geologic map of the Jemez Springs 7.5-minute quadrangle. New Mexico Bur Geol Min Res Open-file Geologic Map OF-GM73, 1:24,000

  • Magaritz M, Hofmann AW (1978) Diffusion of Sr, Ba and Na in obsidian. Geochim Cosmochim Acta 42:595–605

    Article  Google Scholar 

  • Magna T, Wiechert UH, Halliday AN (2004) Low-blank isotope ratio measurement of small samples of lithium using multiple-collector ICPMS. Int J Mass Spectrom 239(1):67–76

    Article  Google Scholar 

  • McCormick TC (1989) Partial homogenization of cryptoperthites in an ignimbrite cooling unit. Contrib Mineral Petrol 101:104–111

    Article  Google Scholar 

  • Musgrave JA, Goff F, Shevenell L, Trujillo PE Jr, Counce D 6 others (1989) Selected data from Continetal Scientific Drilling Core Holes VC-1 and VC-2a, Valles Caldera, New Mexico. Los Alamos Nat. Lab. Rep. LA-11496-OBES, 71

  • Nasholds MWM, Zimmerer MJ (2022) High precision 40Ar/39Ar geochronology and volumetric investigation of volcanism and resurgence following eruption of the Tshirege Member, Bandelier Tuff, at the Valles Caldera. J Volcanol Geotherm Res 431:107624, 25

  • Neukampf J, Ellis BS, Magna T, Laurent O, Bachmann O (2019) Partitioning and isotopic fractionation of lithium in mineral phases of hot, dry rhyolites: the case of the Mesa Falls Tuff. Yellowstone Chem Geol 506:175–186

    Article  Google Scholar 

  • Neukampf J, Ellis BS, Laurent O, Steinmann LK, Ubide T, Oeser M, Magma T, Weyer S, Bachmann O (2021) Timescales of syn-eruptive volatile loss in silicic magmas quantified by Li isotopes. Geology 49:125–129

    Article  Google Scholar 

  • Newman S, Epstein S, Stolper E (1988) Water, carbon dioxide, and hydrogen isotopes in glasses from the ca. 1340 A.D. eruption of the Mono Craters, California: constraints on degassing phenomena and initial volatile content. J Volcanol Geotherm Res 35:75–96

    Article  Google Scholar 

  • Quane SL, Russell JK (2005) Ranking welding intensity in pyroclastic deposits. Bull Volcanol 67:129–143

    Article  Google Scholar 

  • Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL et al (2014) A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28

    Article  Google Scholar 

  • Reneau SL, Drakos PG, Katzman D (2007) Post-resurgence lakes on the Valles Caldera, New Mexico. New Mexico Geol. Soc. Guidebook, 58th Field Conf., Geology of the Jemez Mountains region II, pp. 398-408

  • Scott RB (1971) Alkali exchange during devitrification and hydration of glasses in ignimbrite cooling units. J Geol 79:100–110

    Article  Google Scholar 

  • Self S, Kircher DE, Wolff JA (1988) The El Cajete Series, Valles Caldera, New Mexico. J Geophys Res 93:6113–6127

    Article  Google Scholar 

  • Self S, Randolph-Flagg N, Bailey JE, Magma M (2022) Exposed columns in the Valles Caldera ingnimbrites as records of hydrothermal cooling, Jemez Mountains, New Mexico, USA. J Volcanol Geotherm Res 426:107536, 14

  • Seligman AN, Bindeman IN (2019) The δ18O of primary and secondary waters in hydrous volcanic glass. J Volcanol Geotherm Res 371:72–85

    Article  Google Scholar 

  • Seligman AN, Bindeman I, Van Eaton A, Hoblitt R. (2018) Isotopic insights into the degassing and secondary hydration of volcanic glass from the 1980 erupotions of Mt St Helens Bull Volcanol 80:37, 18

  • Shane P, Smith V, Nairn IA (2003) Biotite composition as a tool for the identification of Quaternary tephra beds. Quat Res 59:262–270

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distnaces in halides and chalcogenides. Acta Crytstallogr Sect A 32:751–767

    Article  Google Scholar 

  • Shiraki R, Iiyama JT (1990) Na-K ion exchange reaction between rhyolitic glass and (Na, K)Cl aqueous solution under hydrothermal conditions. Geochim Cosmochim Acta 54:2923–2931

    Article  Google Scholar 

  • Skuba CE (1990). Sr, Nd, Pb, and O isotopic constraints on the genesis and evolution of the Bandelier Tuff. M.S. Thesis, U. Texas Arlington, 98

  • Sliwinski JT, Ellis BS, Davila-Harris P, Wolff JA, Olin PH, Bachmann O (2017) The use of biotite trace element compositions for identifying magma batches and recording cumulate remobilization at Las Cañadas volcano, Tenerife Bull Volcanol 79:1, 15

  • Spell TL, Kyle PR, Thirlwall MF, Campbell AR (1993) Isotopic and geochemical constraints on the origin and evolution of postcollapse rhyolites in the Valles Caldera, New Mexico. J Geophys Res 98:19723–19739

    Article  Google Scholar 

  • Spell TL, McDougall I, Doulgeris A (1996) Cerro Toledo Rhyolite, Jemez volcanic field, New Mexico: 40Ar/39Ar geochronology of eruptions between two caldera-forming events. Geol Soc Am Bull 108:1549–1566

    Article  Google Scholar 

  • Steck LK, Thurber CH, Fehler MC, Lutter WJ, Roberts PM, Baldridge WS, Stafford DG, Sessions RK (1998) Crust and upper mantle P wave velocity structure beneath Valles Caldera, New Mexico: results from the Jemez teleseismic tomography experiment: J. of Geophys. Res 103:24301–24320

    Google Scholar 

  • Stimac J, HickmottAbell DR, Larocque ACL, Broxton D, Gardner JN, Chipera S, Wolff J, Gauerke E (1996) Redistribution of Pb and other volatile trace metals during eruption, devitrification, and vapor-phase crystallization of the Bandelier Tuff, New Mexico. J Volcanol Geotherm Res 73:245–266

    Article  Google Scholar 

  • Tait S, Thomas R, Gardner J, Jaupart C (1998) Constraints on cooling rates and permeabilities of pumice in an explosive eruption jet from colour and magnetic mineralogy. J Volcanol Geotherm Res 86:79–91

    Article  Google Scholar 

  • Taylor BE (1986) Magmatic volatiles: isotopic variation of C, H, and S. Rev Mineral 16:185–225

    Google Scholar 

  • Taylor BE (1991) Degassing of Obsidian Dome rhyolite, Inyo volcanic chain, California, in: Stable isotope geochemistry: a tribute to Samuel Epstein, ed. H.P. taylor, J.R. O’Neil, I.R. Kaplan. Geochem Soc Spec Pub 3:339–353

    Google Scholar 

  • Taylor HP, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotope systematics. Rev Mineral 16:227–271

    Google Scholar 

  • Troch J, Ellis BS, Harris C, Bachmann O, Bindeman IN (2020) Low-d18O silicic magmas on Earth: a review. Earth Sci Rev 208:103299, 22

  • Truesdell AH (1966) Ion-exchange constants of natural glasses by the electrode method. Amer Mineral 51:110–122

    Google Scholar 

  • Vho A, Lanari P, Rubatto D (2019) An internally-consistent database for oxygen isotope fractionation between minerals. J Petrol 60:2101–2130

    Article  Google Scholar 

  • Vuataz FD, Goff F (1986) Isotope geochemistry of thermal and nonthermal waters in the Valles Caldera, Jemez Mountains, northern New Mexico. J Geophys Res 91:1835–1853

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and compostion effects in a vriety of crustal magma types: Earth and Planetary Science Letters 64:295–304

  • Wolff JA, Gardner JN (1995) Is the Valles Caldera entering a new cycle of activity? Geology 23:411–414

    Article  Google Scholar 

  • Wolff JA, Ramos FC (2014) Processes in caldera-forming high-silica rhyolite magma: Rb-Sr and Pb isotope systematics of the Otowi Member of the Bandelier Tuff, Valles Caldera, New Mexico. USA J Petrol 55:345–375

    Article  Google Scholar 

  • Wolff JA, Balsley SD, Gregory RT (2002) Oxygen isotope disequilibrium between quartz and sanidine from the Bandelier Tuff, New Mexico, consistent with a short residence time of phenocrysts in rhyolitic magma. J Volcanol Geotherm Res 116:119–135

    Article  Google Scholar 

  • Wolff JA, Brunstad KA, Gardner JN (2011) Reconstruction of the most recent volcanic eruptions from the Valles Caldera, New Mexico. J Volcanol Geotherm Res 199:53–68

    Article  Google Scholar 

  • Wolff JA, Forni F, Ellis BS, Szymanowski D (2020) Europium and barium enrichments in compositionally zoned felsic tuffs: a smoking gun for the origin of chemical and physical gradients by cumulate melting. Earth Planet Sci Lett 540:116251, 12

  • Zajacz Z, Halter WE, Pettke T, Guillong M (2008) Determination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: controls on element partitioning. Geochim Cosmochim Acta 72:2169–2197

    Article  Google Scholar 

  • Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. Rev Mineral Geochem 72:311–408

    Article  Google Scholar 

  • Zimmerer MJ, Lafferty J, Coble MA (2016) The eruptive and magmatic history of the youngest pulse of volcanism at the Valles Caldera: implications for successfully dating late Quaternary eruptions. J Volcanol Geotherm Res 310:50–57

    Article  Google Scholar 

Download references

Acknowledgements

This project grew out of a visit to ETH Zürich by JAW funded by Swiss NSF grant 200021_166281 to Ben Ellis. We thank Ben, and also Olivier Bachmann, Peter Larson, Shanaka de Silva, and Steve Self, for discussion. Oscar Laurent and Marcel Guillong are thanked for assistance in generating the LA-ICP-MS data and Chris Harris and Sherissa Roopnarain for assistance during oxygen isotope analyses. Fieldwork in the Valles Caldera was facilitated by US NSF grant EAR-0810306 to JAW. We thank Michael Ort for editorial handling, and Phillip Ruprecht and Kayla Iacovino for comments that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Wolff.

Additional information

Editorial responsibility: M.H. Ort

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 538 KB)

Supplementary file2 (PDF 1592 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolff, J.A., Neukampf, J. Biotite as an indicator of post-eruptive cryptic alteration in the Battleship Rock Ignimbrite, Valles Caldera, NM, USA. Bull Volcanol 84, 99 (2022). https://doi.org/10.1007/s00445-022-01609-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-022-01609-w

Keywords

Navigation