Skip to main content

Whole-rock oxygen isotope ratios as a proxy for the strength and stiffness of hydrothermally altered volcanic rocks

Abstract 

Hydrothermal alteration is considered to increase the likelihood of dome or flank collapse by compromising stability. Understanding how such alteration influences rock properties, and providing independent metrics for alteration that can be used to estimate these parameters, is therefore important to better assess volcanic hazards and mitigate risk. We explore the possibility of using whole-rock δ18O and δD values and water contents, metrics that can potentially track alteration, to estimate the strength (compressive and tensile) and Young’s modulus (i.e. “stiffness”) of altered (acid-sulphate) volcanic rocks from La Soufrière de Guadeloupe (Eastern Caribbean). The δ18O values range from 5.8 to 13.2‰, δD values from − 151 to − 44‰, and water content from 0.3 to 5.1 wt%. We find that there is a good correlation between δ18O values and laboratory-measured strength and Young’s modulus, but that these parameters do not vary systematically with δD or water content (likely due to their pre-treatment at 200 °C). Empirical linear relationships that allow strength and Young’s modulus to be estimated using δ18O values are provided using our new data and published data for Merapi volcano (Indonesia). Our study highlights that δ18O values can be used to estimate the strength and Young’s modulus of volcanic rocks, and could therefore be used to provide parameters for volcano stability modelling. One advantage of this technique is that δ18O only requires a small amount of material, and can therefore provide rock property estimates in scenarios where material is limited, such as borehole cuttings or when sampling large blocks is impracticable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References 

  • Ahmed AS, Revil A, Byrdina S, Coperey A, Gailler L, Grobbe N, Humaida H (2018) 3D electrical conductivity tomography of volcanoes. J Volcanol Geoth Res 356:243–263

    Article  Google Scholar 

  • Aizawa, K., Ogawa, Y., & Ishido, T. (2009). Groundwater flow and hydrothermal systems within volcanic edifices: Delineation by electric self‐potential and magnetotellurics. Journal of Geophysical Research: Solid Earth, 114(B1).

  • Apuani T, Corazzato C, Cancelli A, Tibaldi A (2005) Stability of a collapsing volcano (Stromboli, Italy): Limit equilibrium analysis and numerical modelling. J Volcanol Geoth Res 144(1–4):191–210

    Article  Google Scholar 

  • Ball JL, Stauffer PH, Calder ES, Valentine GA (2015) The hydrothermal alteration of cooling lava domes. Bull Volcanol 77(12):1–16

    Article  Google Scholar 

  • Ball JL, Taron J, Reid ME, Hurwitz S, Finn C, Bedrosian P (2018) Combining multiphase groundwater flow and slope stability models to assess stratovolcano flank collapse in the Cascade Range. Journal of Geophysical Research: Solid Earth 123(4):2787–2805

    Article  Google Scholar 

  • Belousov A, Voight B, Belousova M (2007) Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits. Bull Volcanol 69(7):701–740

    Article  Google Scholar 

  • Berg SE, Troll VR, Harris C, Deegan FM, Riishuus MS, Burchardt S, Krumbholz M (2018) Exceptionally high whole-rock δ18O values in intra-caldera rhyolites from Northeast Iceland. Mineral Mag 82(5):1147–1168

    Article  Google Scholar 

  • Bergmann, J., Friedel, P., & Kleeberg, R. (1998). BGMN—a new fundamental parameters based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations. CPD Newsletter, 20(5).

  • Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Mineral Geochem 69(1):445–478

    Article  Google Scholar 

  • Borthwick J, Harmon RS (1982) A note regarding CIF3 as an alternative to Br F5 for oxygen isotope analysis. Geochim Cosmochim Acta 46(9):1665–1668

    Article  Google Scholar 

  • Boudon G, Le Friant A, Villemant B, Viodé J-P (2005) Martinique. In: Lindsay JM, Robertson REA, Shepherd JB, Ali S (eds) Volcanic Hazard Atlas of the Lesser Antilles. The University of the West Indies, Trinidad and Tobago, WI, Seismic Research Uni, pp 126–145

    Google Scholar 

  • Boudon, G., Le Friant, A., Komorowski, J. C., Deplus, C., & Semet, M. P. (2007). Volcano flank instability in the Lesser Antilles Arc: Diversity of scale, processes, and temporal recurrence. Journal of Geophysical Research: Solid Earth, 112(B8).

  • Brandriss ME, O’Neil JR, Edlund MB, Stoermer EF (1998) Oxygen isotope fractionation between diatomaceous silica and water. Geochemica Et Cosmochimica Acta 62(7):119–1125

    Article  Google Scholar 

  • Brombach T, Marini L, Hunziker JC (2000) Geochemistry of the thermal springs and fumaroles of Basse-Terre Island, Guadeloupe. Lesser Antilles Bulletin of Volcanology 61(7):477–490

    Article  Google Scholar 

  • Browne PRL (1978) Hydrothermal alteration in active geothermal fields. Annu Rev Earth Planet Sci 6(1):229–248

    Article  Google Scholar 

  • Byrdina S, Friedel S, Vandemeulebrouck J, Budi-Santoso A, Suryanto W, Rizal MH, Winata E (2017) Geophysical image of the hydrothermal system of Merapi volcano. J Volcanol Geoth Res 329:30–40

    Article  Google Scholar 

  • Byrdina S, Grandis H, Sumintadireja P, Caudron C, Syahbana DK, Naffrechoux E, Vandemeulebrouck J (2018) Structure of the acid hydrothermal system of Papandayan volcano, Indonesia, investigated by geophysical methods. J Volcanol Geoth Res 358:77–86

    Article  Google Scholar 

  • Carlut J, Quidelleur X (2000) Absolute paleointensities recorded during the Brunhes chron at La Guadeloupe Island. Phys Earth Planet Inter 120(4):255–269

    Article  Google Scholar 

  • Cant JL, Siratovich PA, Cole JW, Villeneuve MC, Kennedy BM (2018) Matrix permeability of reservoir rocks, Ngatamariki geothermal field, Taupo Volcanic Zone. New Zealand Geothermal Energy 6(1):1–28

    Article  Google Scholar 

  • Cathles LM (1993) Oxygen isotope alteration in the Noranda mining district, Abitibi greenstone belt. Quebec Economic Geology 88(6):1483–1511

    Article  Google Scholar 

  • Cecchi E, de Vries BVW, Lavest JM (2004) Flank spreading and collapse of weak-cored volcanoes. Bull Volcanol 67(1):72–91

    Article  Google Scholar 

  • Chiodini G, Cioni R, Frullani A, Guidi M, Marini L, Prati F, Raco B (1996) Fluid geochemistry of Montserrat Island. West Indies Bulletin of Volcanology 58(5):380–392

    Article  Google Scholar 

  • Criss RE, Champion DE, McIntyre DH (1985) Oxygen isotope, aeromagnetic, and gravity anomalies associated with hydrothermally altered zones in the Yankee Fork mining district, Custer County. Idaho Economic Geology 80(5):1277–1296

    Article  Google Scholar 

  • Darmawan H, Troll VR, Walter TR, Deegan FM, Geiger H, Heap MJ, Müller D (2022) Hidden mechanical weaknesses within lava domes provided by buried high-porosity hydrothermal alteration zones. Sci Rep 12(1):1–14

    Article  Google Scholar 

  • Davidson J (1985) Mechanisms of contamination in Lesser Antilles island arc magmas from radiogenic and oxygen isotope relationships. Earth Planet Sci Lett 72(2–3):163–174

    Article  Google Scholar 

  • Davidson JP, Harmon RS (1989) Oxygen isotope constraints on the petrogenesis of volcanic arc magmas from Martinique, Lesser Antilles. Earth Planet Sci Lett 95(3–4):255–270

    Article  Google Scholar 

  • Day SJ (1996) Hydrothermal pore fluid pressure and the stability of porous, permeable volcanoes. Geological Society, London, Special Publications 110(1):77–93

    Article  Google Scholar 

  • Deegan FM, Whitehouse MJ, Troll VR, Geiger H, Jeon H, le Roux P, González-Maurel O (2021) Sunda arc mantle source δ18O value revealed by intracrystal isotope analysis. Nat Commun 12(1):1–10

    Article  Google Scholar 

  • del Potro R, Hürlimann M (2009) The decrease in the shear strength of volcanic materials with argillic hydrothermal alteration, insights from the summit region of Teide stratovolcano. Tenerife Engineering Geology 104(1–2):135–143

    Article  Google Scholar 

  • Donoghue E, Troll VR, Harris C, O’Halloran A, Walter TR, Torrado FJP (2008) Low-temperature hydrothermal alteration of intra-caldera tuffs, Miocene Tejeda caldera, Gran Canaria, Canary Islands. J Volcanol Geoth Res 176(4):551–564

    Article  Google Scholar 

  • Donoghue E, Troll VR, Harris C (2010) Hydrothermal alteration of the Miocene Tejeda Intrusive Complex, Gran Canaria, Canary Islands: insights from petrography, mineralogy and O− and H− isotope geochemistry. J Petrol 51:2149–2176

    Article  Google Scholar 

  • Farquharson JI, Wild B, Kushnir AR, Heap MJ, Baud P, Kennedy B (2019) Acid-induced dissolution of andesite: evolution of permeability and strength. Journal of Geophysical Research: Solid Earth 124(1):257–273

    Article  Google Scholar 

  • Finizola A, Ricci T, Deiana R, Cabusson SB, Rossi M, Praticelli N, Lelli M (2010) Adventive hydrothermal circulation on Stromboli volcano (Aeolian Islands, Italy) revealed by geophysical and geochemical approaches: implications for general fluid flow models on volcanoes. J Volcanol Geoth Res 196(1–2):111–119

    Article  Google Scholar 

  • Finn CA, Deszcz-Pan M, Ball JL, Bloss BJ, Minsley BJ (2018) Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability. J Volcanol Geoth Res 357:261–275

    Article  Google Scholar 

  • Finn CA, Bedrosian PA, Holbrook WS, Auken E, Bloss BR, Crosbie J (2022) Geophysical imaging of the Yellowstone hydrothermal plumbing system. Nature 603:643–647

    Article  Google Scholar 

  • Frolova J, Ladygin V, Rychagov S, Zukhubaya D (2014) Effects of hydrothermal alterations on physical and mechanical properties of rocks in the Kuril-Kamchatka island arc. Eng Geol 183:80–95

    Article  Google Scholar 

  • Fulignati P (2020) Clay Minerals in Hydrothermal Systems Minerals 10(10):919

    Google Scholar 

  • Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271(5645):534–536

    Article  Google Scholar 

  • Ghorbani A, Revil A, Coperey A, Ahmed AS, Roque S, Heap MJ, Viveiros F (2018) Complex conductivity of volcanic rocks and the geophysical mapping of alteration in volcanoes. J Volcanol Geoth Res 357:106–127

    Article  Google Scholar 

  • Green, G. R., Ohmoto, H., Date, J., & Takahashi, T. (1983). Whole-rock oxygen isotope distribution in the Fukazawa-Kosaka area, Hokuroku District, Japan, and its potential application to mineral exploration. In: Economic Geology Monograph 5 The Kuroko and Related Volcanogenic Massive Sulfide Deposits (Eds: Ohmoto, H. & Skinner B. J.) https://doi.org/10.5382/Mono.05.24.

  • Hansteen TH, Troll VR (2003) Oxygen isotope composition of xenoliths from the oceanic crust and volcanic edifice beneath Gran Canaria (Canary Islands): consequences for crustal contamination of ascending magmas. Chem Geol 193(3–4):181–193

    Article  Google Scholar 

  • Harnett CE, Heap MJ (2021) Mechanical and topographic factors influencing lava dome growth and collapse. J Volcanol Geoth Res 420:107398

    Article  Google Scholar 

  • Harris C, Compton JS, Bevington SA (1999) Oxygen and hydrogen isotope composition of kaolinite deposits, Cape Peninsula, South Africa; low-temperature, meteoric origin. Econ Geol 94(8):1353–1366

    Article  Google Scholar 

  • Harris C, Vogeli J (2010) Oxygen isotope composition of garnet in the Peninsula Granite, Cape Granite Suite, South Africa: constraints on melting and emplacement mechanisms. S Afr J Geol 113(4):401–412

    Article  Google Scholar 

  • Hattori K, Muehlenbachs K (1982) Oxygen isotope ratios of the Icelandic crust. Journal of Geophysical Research: Solid Earth 87(B8):6559–6565

    Article  Google Scholar 

  • Heap MJ, Troll VR, Kushnir AR, Gilg HA, Collinson AS, Deegan FM, Walter TR (2019) Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour. Nat Commun 10(1):1–10

    Article  Google Scholar 

  • Heap MJ, Villeneuve M, Albino F, Farquharson JI, Brothelande E, Amelung F, Baud P (2020) Towards more realistic values of elastic moduli for volcano modelling. J Volcanol Geoth Res 390:106684

    Article  Google Scholar 

  • Heap MJ, Gravley DM, Kennedy BM, Gilg HA, Bertolett E, Barker SL (2020) Quantifying the role of hydrothermal alteration in creating geothermal and epithermal mineral resources: the Ohakuri ignimbrite (Taupō Volcanic Zone, New Zealand). J Volcanol Geoth Res 390:106703

    Article  Google Scholar 

  • Heap, M. J., Baumann, T. S., Rosas‐Carbajal, M., Komorowski, J. C., Gilg, H. A., Villeneuve, M., ... & Reuschlé, T. (2021a). Alteration‐Induced Volcano Instability at La Soufrière de Guadeloupe (Eastern Caribbean). Journal of Geophysical Research: Solid Earth, 126(8), e2021aJB022514.

  • Heap MJ, Baumann T, Gilg HA, Kolzenburg S, Ryan AG, Villeneuve M, Clynne MA (2021) Hydrothermal alteration can result in pore pressurization and volcano instability. Geology 49(11):1348–1352

    Article  Google Scholar 

  • Heap MJ, Violay ME (2021) The mechanical behaviour and failure modes of volcanic rocks: a review. Bull Volcanol 83(5):1–47

    Article  Google Scholar 

  • Heap MJ, Harnett CE, Wadsworth FB, Gilg HA, Carbillet L, Rosas-Carbaja M, Komorowski JC, Baud P, Troll VR, Deegan FM, Holohan EP, Moretti R (2022) The tensile strength of hydrothermally altered volcanic rocks. J Volcanol Geoth Res 428:107576. https://doi.org/10.1016/j.jvolgeores.2022.107576

    Article  Google Scholar 

  • Heap MJ, Jessop DE, Wadsworth FB, Rosas-Carbajal M, Komorowski JC, Gilg HA, Moretti R (2022) The thermal properties of hydrothermally altered andesites from La Soufrière de Guadeloupe (Eastern Caribbean). J Volcanol Geoth Res 421:107444

    Article  Google Scholar 

  • Hoblitt, R. P., Miller, C. D., & Vallance, J. W. (1981). Origin and stratigraphy of the deposit produced by the May 18 directed blast. In The 1980 Eruptions of Mount St. Helens, Washington (Vol. 1250, pp. 401–419). US Government Printing Office Washington, DC.

  • Hoek E, Carranza-Torres C, Corkum B (2002) Hoek-Brown failure criterion-2002 edition. Proceedings of NARMS-Tac 1(1):267–273

    Google Scholar 

  • Hoek E, Diederichs MS (2006) Empirical estimation of rock mass modulus. Int J Rock Mech Min Sci 43(2):203–215

    Article  Google Scholar 

  • Inoue, A. (1995). Formation of clay minerals in hydrothermal environments. In Origin and mineralogy of clays (pp. 268–329). Springer, Berlin, Heidelberg.

  • Jessop DE, Moune S, Moretti R, Gibert D, Komorowski JC, Robert V, Burtin A (2021) A multi-decadal view of the heat and mass budget of a volcano in unrest: La Soufrière de Guadeloupe (French West Indies). Bull Volcanol 83(3):1–19

    Article  Google Scholar 

  • Joseph EP, Fournier N, Lindsay JM, Fischer TP (2011) Gas and water geochemistry of geothermal systems in Dominica, Lesser Antilles island arc. J Volcanol Geoth Res 206(1–2):1–14

    Article  Google Scholar 

  • Kereszturi G, Schaefer L, Mead S, Miller C, Procter J, Kennedy B (2021) Synthesis of hydrothermal alteration, rock mechanics and geophysical mapping to constrain failure and debris avalanche hazards at Mt. Ruapehu (New Zealand). New Zealand J Geol and Geophys 64(2–3):421–442

    Article  Google Scholar 

  • Kita I, Taguchi S, Matsubaya O (1985) Oxygen isotope fractionation between amorphous silica and water at 34–93 °C. Nature 314(6006):83–84

    Article  Google Scholar 

  • Komorowski J.-C., Boudon G., Semet, M., Beauducel, F., Anténor-Habazac, C., Bazin, S., Hammmouya. G. (2005). Guadeloupe. J. Lindsay, R. Robertson, J. Shepherd, S. Ali (Eds.), Volcanic Atlas of the Lesser Antilles, University of the French West Indies, Seismic Research Unit, 65–102.

  • Komorowski J-C, Legendre Y, Boudon G, Barsotti S, Esposti-Ongaro T, Jenkins S et al (2012) A new Holocene eruptive chronology for la Soufrière de Guadeloupe volcano: implications for credible scenario definition as well as hazard and impact modelling. Colima, Mexico: Cities on Volcanoes, IAVCEI 7:18–23

    Google Scholar 

  • Komorowski JC, Jenkins S, Baxter PJ, Picquout A, Lavigne F, Charbonnier S, Budi-Santoso A (2013) Paroxysmal dome explosion during the Merapi 2010 eruption: processes and facies relationships of associated high-energy pyroclastic density currents. J Volcanol Geoth Res 261:260–294

    Article  Google Scholar 

  • Le Friant A, Boudon G, Komorowski JC, Heinrich P, Semet MP (2006) Potential flank-collapse of Soufriere Volcano, Guadeloupe, lesser Antilles? Numerical Simulation and Hazards Natural Hazards 39(3):381–393

    Article  Google Scholar 

  • Legendre, Y. (2012). Reconstruction fine de l'histoire éruptive et scenarii éruptifs à la soufrière de Guadeloupe: vers un modèle intégré de fonctionnement du volcan (Doctoral dissertation, Paris 7).

  • Lentz DR (1999) Petrology, geochemistry, and oxygen isotope interpretation of felsic volcanic and related rocks hosting the Brunswick 6 and 12 massive sulfide deposits (Brunswick Belt), Bathurst mining camp, New Brunswick. Canada Economic Geology 94(1):57–86

    Article  Google Scholar 

  • Lévy L, Gibert B, Sigmundsson F, Flóvenz ÓG, Hersir GP, Briole P, Pezard PA (2018) The role of smectites in the electrical conductivity of active hydrothermal systems: electrical properties of core samples from Krafla volcano. Iceland Geophysical Journal International 215(3):1558–1582

    Article  Google Scholar 

  • Lipman, P. W., & Mullineaux, D. R. (1981). The 1980 eruptions of Mount St. Helens, Washington (No. 1250). USGPO.

  • Lube G, Breard EC, Cronin SJ, Procter JN, Brenna M, Moebis A, Fournier N (2014) Dynamics of surges generated by hydrothermal blasts during the 6 August 2012 Te Maari eruption, Mt. Tongariro, New Zealand. J Volcanol Geoth Res 286:348–366

    Article  Google Scholar 

  • Marmoni GM, Martino S, Heap MJ, Reuschlé T (2017) Gravitational slope-deformation of a resurgent caldera: New insights from the mechanical behaviour of Mt. Nuovo tuffs (Ischia Island, Italy). J Volcanol Geoth Res 345:1–20

    Article  Google Scholar 

  • Mayer K, Scheu B, Montanaro C, Yilmaz TI, Isaia R, Aßbichler D, Dingwell DB (2016) Hydrothermal alteration of surficial rocks at Solfatara (Campi Flegrei): Petrophysical properties and implications for phreatic eruption processes. J Volcanol Geoth Res 320:128–143

    Article  Google Scholar 

  • Metcalfe A, Moune S, Komorowski JC, Kilgour G, Jessop DE, Moretti R, Legendre Y (2021) Magmatic Processes at La Soufrière de Guadeloupe: Insights From Crystal Studies and Diffusion Timescales for Eruption Onset. Front Earth Sci 9:78

    Google Scholar 

  • Moon V, Bradshaw J, Smith R, de Lange W (2005) Geotechnical characterisation of stratocone crater wall sequences, White Island Volcano. New Zealand Engineering Geology 81(2):146–178

    Article  Google Scholar 

  • Mordensky SP, Heap MJ, Kennedy BM, Gilg HA, Villeneuve MC, Farquharson JI, Gravley DM (2019) Influence of alteration on the mechanical behaviour and failure mode of andesite: implications for shallow seismicity and volcano monitoring. Bull Volcanol 81(8):1–12

    Article  Google Scholar 

  • Mordensky, S. P., Villeneuve, M. C., Kennedy, B. M., & Struthers, J. (2022). Hydrothermally induced edifice destabilisation: The mechanical behaviour of rock mass surrounding a shallow intrusion in andesitic lavas, Pinnacle Ridge, Ruapehu (New Zealand). Engineering Geology, 106696.

  • Moretti R, Komorowski JC, Ucciani G, Moune S, Jessop D, de Chabalier JB, Chaussidon M (2020) The 2018 unrest phase at La Soufrière of Guadeloupe (French West Indies) andesitic volcano: Scrutiny of a failed but prodromal phreatic eruption. J Volcanol Geoth Res 393:106769

    Article  Google Scholar 

  • Moretti R, Moune S, Jessop D, Glynn C, Robert V, Deroussi S (2021) The Basse-Terre Island of Guadeloupe (Eastern Caribbean, France) and Its Volcanic-Hydrothermal Geodiversity: A Case Study of Challenges, Perspectives, and New Paradigms for Resilience and Sustainability on Volcanic Islands. Geosciences 11(11):454

    Article  Google Scholar 

  • Moune S, Moretti R, Burtin A, Jessop D, Didier T, Robert V, Buscetti M (2022) Gas monitoring of volcanic-hydrothermal plumes in a tropical environment: the case of La Soufriere de Guadeloupe unrest volcano (Lesser Antilles). Front Earth Sci 10:795760

    Article  Google Scholar 

  • Okubo CH (2004) Rock mass strength and slope stability of the Hilina slump, Kīlauea volcano, Hawai’i. J Volcanol Geoth Res 138(1–2):43–76

    Article  Google Scholar 

  • Paradis S, Taylor BE, Watkinson DH, Jonasson IR (1993) Oxygen isotope zonation and alteration in the northern Noranda District, Quebec; evidence for hydrothermal fluid flow. Econ Geol 88(6):1512–1525

    Article  Google Scholar 

  • Peruzzetto M, Komorowski JC, Le Friant A, Rosas-Carbajal M, Mangeney A, Legendre Y (2019) Modeling of partial dome collapse of La Soufrière of Guadeloupe volcano: implications for hazard assessment and monitoring. Sci Rep 9(1):1–15

    Article  Google Scholar 

  • Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier. Wash Geol 29(9):779–782

    Article  Google Scholar 

  • Reid ME (2004) Massive collapse of volcano edifices triggered by hydrothermal pressurization. Geology 32(5):373–376

    Article  Google Scholar 

  • Rosas-Carbajal M, Komorowski JC, Nicollin F, Gibert D (2016) Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics. Sci Rep 6(1):1–11

    Article  Google Scholar 

  • Rose TP, Criss RE, Mughannam AJ, Clynne MA (1994) Oxygen isotope evidence for hydrothermal alteration within a Quaternary stratovolcano, Lassen Volcanic National Park, California. Journal of Geophysical Research: Solid Earth 99(B11):21621–21633

    Article  Google Scholar 

  • Rye RO (2005) A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chem Geol 215(1–4):5–36

    Article  Google Scholar 

  • Salaün A, Villemant B, Gérard M, Komorowski JC, Michel A (2011) Hydrothermal alteration in andesitic volcanoes: trace element redistribution in active and ancient hydrothermal systems of Guadeloupe (Lesser Antilles). J Geochem Explor 111(3):59–83

    Article  Google Scholar 

  • Schaefer LN, Kereszturi G, Villeneuve M, Kennedy B (2021) Determining physical and mechanical volcanic rock properties via reflectance spectroscopy. J Volcanol Geoth Res 420:107393

    Article  Google Scholar 

  • Scher S, Williams-Jones AE, Williams-Jones G (2013) Fumarolic activity, acid-sulfate alteration, and high sulfidation epithermal precious metal mineralization in the crater of Kawah Ijen Volcano, Java. Indonesia Economic Geology 108(5):1099–1118

    Article  Google Scholar 

  • Sheppard SMF, Gilg HA (1996) Stable isotope geochemistry of clay minerals:“The story of sloppy, sticky, lumpy and tough” Cairns-Smith (1971). Clay Miner 31(1):1–24

    Article  Google Scholar 

  • Siratovich PA, Heap MJ, Villeneuve MC, Cole JW, Reuschlé T (2014) Physical property relationships of the Rotokawa Andesite, a significant geothermal reservoir rock in the Taupo Volcanic Zone. New Zealand Geothermal Energy 2(1):1–31

    Google Scholar 

  • Sparks RSJ, Barclay J, Calder ES, Herd RA, Komorowski JC, Luckett R, Woods AW (2002) Generation of a debris avalanche and violent pyroclastic density current on 26 December (Boxing Day) 1997 at Soufriere Hills Volcano, Montserrat. Geological Society, London, Memoirs 21(1):409–434

    Article  Google Scholar 

  • Stoffregen RE, Rye RO, Wasserman MD (1994) Experimental studies of alunite: I. 18O-16O and DH fractionation factors between alunite and water at 250–450 C. Geochimica et Cosmochimica Acta 58(2):903–916

    Article  Google Scholar 

  • Tayor, H. P. (1974). The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposit. Economic Geology, 69(843,883).

  • Troll, V. R., Hilton, D. R., Jolis, E. M., Chadwick, J. P., Blythe, L. S., Deegan, F. M., ... & Zimmer, M. (2012). Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia. Geophysical Research Letters, 39(11).

  • Tseng KH, Ogawa Y, Tank SB, Ujihara N, Honkura Y, Terada A, Kanda W (2020) Anatomy of active volcanic edifice at the Kusatsu-Shirane volcano, Japan, by magnetotellurics: hydrothermal implications for volcanic unrests. Earth, Planets and Space 72(1):1–11

    Article  Google Scholar 

  • Van Soest MC, Hilton DR, MacPherson CG, Mattey DP (2002) Resolving sediment subduction and crustal contamination in the Lesser Antilles Island Arc: a combined He–O–Sr isotope approach. J Petrol 43(1):143–170

    Article  Google Scholar 

  • van Wyk de Vries, B., Kerle, N., & Petley, D. (2000). Sector collapse forming at Casita volcano, Nicaragua. Geology, 28(2), 167-170

  • Vennemann TW, Smith HS (1990) The rate and temperature of reaction of CIF3 with silicate minerals, and their relevance to oxygen isotope analysis. Chemical Geology: Isotope Geoscience Section 86(1):83–88

    Google Scholar 

  • Vennemann TW, O’Neil JR (1993) A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc reagent. Chem Geol 103(1–4):227–234

    Article  Google Scholar 

  • Villemant B, Hammouya G, Michel A, Semet MP, Komorowski JC, Boudon G, Cheminée JL (2005) The memory of volcanic waters: shallow magma degassing revealed by halogen monitoring in thermal springs of La Soufrière volcano (Guadeloupe, Lesser Antilles). Earth Planet Sci Lett 237(3–4):710–728

    Article  Google Scholar 

  • Villemant B, Komorowski JC, Dessert C, Michel A, Crispi O, Hammouya G, De Chabalier JB (2014) Evidence for a new shallow magma intrusion at La Soufrière of Guadeloupe (Lesser Antilles): insights from long-term geochemical monitoring of halogen-rich hydrothermal fluids. J Volcanol Geoth Res 285:247–277

    Article  Google Scholar 

  • Voight B, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide avalanche of May 18. US Geol Surv Prof Pap 1250:347–377

    Google Scholar 

  • Voight, B., Komorowski, J. C., Norton, G. E., Belousov, A., Belousova, M., Boudon, G., & Young, S. (2002). The 1997 Boxing Day sector collapse and debris avalanches, Soufrière Hills volcano, Montserrat, WI. The Eruption of Soufriere Hills Volcano, Montserrat, From 1995 to 1999, 363–407.

  • Wallace, C. S., Schaefer, L. N., & Villeneuve, M. C. (2021). Material Properties and Triggering Mechanisms of an Andesitic Lava Dome Collapse at Shiveluch Volcano, Kamchatka, Russia, Revealed Using the Finite Element Method. Rock Mechanics and Rock Engineering, 1–18.

  • Watters RJ, Zimbelman DR, Bowman SD, Crowley JK (2000) Rock mass strength assessment and significance to edifice stability, Mount Rainier and Mount Hood, Cascade Range volcanoes. Pure Appl Geophys 157(6):957–976

    Article  Google Scholar 

  • Wyering LD, Villeneuve MC, Wallis IC, Siratovich PA, Kennedy BM, Gravley DM, Cant JL (2014) Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand. J Volcanol Geoth Res 288:76–93

    Article  Google Scholar 

  • Zimbelman DR, Rye RO, Breit GN (2005) Origin of secondary sulfate minerals on active andesitic stratovolcanoes. Chem Geol 215(1–4):37–60

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the TelluS Program of INSU-CNRS (“Assessing the role of hydrothermal alteration on volcanic hazards”) and ANR grant MYGALE (“Modelling the phYsical and chemical Gradients of hydrothermal ALteration for warning systems of flank collapse at Explosive volcanoes”; ANR-21-CE49-0010). M. Heap also acknowledges support from the Institut Universitaire de France (IUF). V.R. Troll acknowledges support from the Swedish Research Council (Vetenskapsrådet; grant number 2020-03789). We thank the IPGP for general funding for the Observatoires Volcanologiques et Sismologiques (OVS), INSU-CNRS for the funding provided to the Service National d’Observation en Volcanologie (SNOV), and the Ministère pour la Transition Ecologique (MTE) for financial support for the monitoring of the unstable flank of La Soufrière de Guadeloupe. We are grateful to the Parc National de Guadeloupe for allowing us to carry out geological fieldwork on La Soufrière. We thank Tomaso Esposti Ongaro and Lucille Carbillet for help in the field. This study contributes to the IdEx Université Paris Cité ANR-18-IDEX-0001. We thank Peter Schaaf and Ben Ellis for comments that helped improve this manuscript, and Ulrich Kueppers for handling our manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Michael Heap and Valentin Troll conceived the idea for this study. Rock samples were collected by Michael Heap, Marina Rosas-Carbajal, Jean-Christophe Komorowski, and Patrick Baud. Mechanical laboratory experiments were performed by Michael Heap. Isotope analyses were performed by Chris Harris. Isotope data were discussed and analysed by Chris Harris, Albert Gilg, Roberto Moretti, and Valentin Troll. Michael Heap wrote the manuscript, with contributions from all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Michael J. Heap.

Ethics declarations

Competing interests

The authors declare no financial or non-financial interests that are directly or indirectly related to this work.

Additional information

Editorial responsibility: U. Kueppers

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 20 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heap, M.J., Troll, V.R., Harris, C. et al. Whole-rock oxygen isotope ratios as a proxy for the strength and stiffness of hydrothermally altered volcanic rocks. Bull Volcanol 84, 74 (2022). https://doi.org/10.1007/s00445-022-01588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-022-01588-y

Keywords

  • La Soufrière de Guadeloupe
  • Merapi
  • Porosity
  • Uniaxial compressive strength
  • Tensile strength
  • Young’s modulus
  • Whole-rock oxygen isotope ratio