Skip to main content
Log in

Probing the hidden magmatic evolution of El Misti volcano (Peru) with the Pb isotope composition of fumaroles

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

This work proposes a new method to probe the hidden magmatic evolution of quiescent Andean volcanoes from the Pb isotope composition of gases. The method is based on an assimilation-fractional crystallisation-degassing model linking the Pb isotope composition of gases with the SiO2 content of their magmatic source. The model is applied to El Misti volcano that threatens Arequipa, the second most densely populated city of Peru. Gas condensates and Pb-rich solid deposits (PbS, PbCl2, PbSO4) collected in 2018 in the bottom of El Misti crater at 260–150°C fumarole vents were used to reconstruct the mean composition of degassing magmas (60.8–61.8 wt% SiO2). These compositions are slightly more evolved than the lavas from the last AD 1440–1470 eruption, suggesting either the secular differentiation of the main magma reservoir, or the contribution of more evolved magmas to volcanic gases. On the other hand, the slight but significant difference between the instantaneous composition recorded in gas condensates and the time-integrated composition recorded in solid deposits points to the degassing of less evolved magmas over the last decades. This trend is ascribed to a recent recharge of El Misti reservoir with hot mafic magmas, in agreement with the evolution of fumarolic deposit mineralogy in the last half a century. The Pb isotope composition of gas appears to be a promising tool for probing the hidden magmatic evolution of quiescent volcanoes where assimilation-fractional crystallisation operates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Africano F, Van Rompaey G, Bernard A, Le Guern F (2002) Deposition of trace elements from high temperature gases of Satsuma-Iwojima volcano. Earth Planet Space 54:275–286

    Article  Google Scholar 

  • Barreiro BA, Clark AH (1984) Lead isotopic evidence for evolutionary changes in magma-crust interaction, Central Andes, southern Peru. Earth Planet Sci Lett 69:30–42

    Article  Google Scholar 

  • Birnie RW, Hall JH (1974) The geochemistry of El Misti volcano, Peru fumaroles. Bull Volcanol 38:1

    Article  Google Scholar 

  • Brearley M, Scarfe C (1986) Dissolution rates of upper mantle minerals in an alkali basalt melt at high pressure: an experimental study and implications for ultramafic xenolith survival. J Petrol 27:1157–1182

    Article  Google Scholar 

  • Bullard F (1962) Volcanoes of southern Peru. Bull Volcanol 24:443–453

    Article  Google Scholar 

  • Chavéz Chavéz JA (1992) La erupción del volcán Misti, pasado, presente, futuro: Arequipa. Impresiones Zenit, Arequipa, p 158

    Google Scholar 

  • Cobeñas G, Thouret J-C, Bonadonna C, Boivin P (2012) The c. 2030 yr BP Plinian eruption of El Misti volcano, Peru: eruption dynamics and hazard implications. J Volcanol Geotherm Res 241–242:105–120

    Article  Google Scholar 

  • De Paolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202. https://doi.org/10.1016/0012-821X(81)90153-9

    Article  Google Scholar 

  • Deniel C, Pin C (2001) Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements. Anal Chim Acta 426:95–103

    Article  Google Scholar 

  • Gauthier P-J, Le Cloarec M-F, Condomines M (2000) Degassing processes at Stromboli volcano inferred from short-lived disequilibria (210Pb-210Bi-210Po) in volcanic gases. J Volcanol Geotherm Res 102:1–19

    Article  Google Scholar 

  • Hantke G, Parodi A (1966) Catalogue of the active volcanoes of the world, Part XIX edn. IAVCEI, Colombia, Ecuador and Peru: Naples, p 73

    Google Scholar 

  • Harpel C, de Silva S, Salas G (2011) The 2 ka eruption of Misti volcano, Southern Peru—the most recent Plinian eruption of Arequipa’s iconic volcano. Geol Soc Am Spec papers Vol. 484 (72 pp.).

  • INEI (2018). Directorio Nacional de Centros Poblados, Censo Nacional 2017: XII de Población, VII de Vivienda y III de Comunidades Indígenas (https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1541/index.htm). Accessed 5 Aug 2021

  • Johnson ML, Burnett DS (1993) SO2–rock interaction on Io: reaction under highly oxidizing conditions. J Geophys Res 98:1223–1230

    Article  Google Scholar 

  • Kiebala A (2008) Magmatic processes by U-Th disequilibria method. Comparison of Two Andean Systems: El Misti Volcano (S. Peru) and Taapaca Volcanic Center (N. Chile). (PhD. Thesis). Georg-August-Universität Göttingen, Germany (93 pp.).

  • Mamani M, Tassara A, Wörner G (2008) Composition and structural control of crustal domains in the central Andes. Geochem Geophys Geosyst 9:Q03006. https://doi.org/10.1029/2007GC001925

    Article  Google Scholar 

  • Moussallam Y, Peters N, Masias P, Apaza F, Barnie T, Schipper CI, Curtis A, Tamburello G, Aiuppa A, Bani P, Giudice G, Pieri D, Davies AG, Oppenheimer C (2017) Magmatic gas percolation through the old lava dome of El Misti volcano. Bull Volcanol 79:46. https://doi.org/10.1007/s00445-017-1129-5

    Article  Google Scholar 

  • Richter FM (2004) Timescales determining the degree of kinetic isotope fractionation by evaporation and condensation. Geochim Cosmochim Acta 68:4971–4992

    Article  Google Scholar 

  • Rivera M, Martin H, Le Pennec J-L, Thouret J-C, Gourgaud A, Gerbe M-C (2017) Petro-geochemical constraints on the source and evolution of magmas at El Misti volcano (Peru). Lithos 268–271:240–259. https://doi.org/10.1016/j.lithos.2016.11.009

    Article  Google Scholar 

  • Ruprecht P, Wörner G (2007) Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti strato-volcano and Andahua monogenetic cones. J Volcanol Geotherm Res 165:142–162. https://doi.org/10.1016/j.jvolgeores.2007.06.002

    Article  Google Scholar 

  • Sainlot N, Vlastelic I, Nauret F, Moune S, Aguilera F (2020a) Sr-Pb isotopes signature of Lascar volcano (Chile): insight into contamination of arc magmas ascending through a thick continental crust. J S Am Earth Sci 101:102599. https://doi.org/10.1016/j.jsames.2020.102599

    Article  Google Scholar 

  • Sainlot N, Vlastelic I, Moune S, Rose-Koga EF, Schiavi F, Valade S, Aguilera F (2020b) Uptake of gaseous thallium, tellurium and vanadium into anhydrous alum, Lascar volcano fumaroles, Chile. Geochim Cosmochim Acta 275:64–82

    Article  Google Scholar 

  • Symonds RB, Rose WI, Reed MH, Lichte FE, Finnegan DL (1987) Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi Volcano, Indonesia. Geochim Cosmochim Acta 51:2083–2101

    Article  Google Scholar 

  • Taran YA, Bernard A, Gavilanes JC, Africano F (2000) Native gold in mineral precipitates from high-temperature volcanic gases of Colima volcano, Mexico. Appl Geochem 15:337–346

    Article  Google Scholar 

  • Tepley FJ, de Silva S, Salas G (2013) Magma dynamics and petrological evolution leading to the VEI 5 2000 BP eruption of El Misti volcano, southern Peru. J Petrol 54:2033–2065. https://doi.org/10.1093/petrology/egt040

    Article  Google Scholar 

  • Thompson AB, Matile L, Ulmer P (2002) Some thermal constraints on crustal assimilation during fractionation of hydrous, mantle-derived magmas with examples from central Alpine batholiths. J Petrol 43:403–422. https://doi.org/10.1093/petrology/43.3.403

    Article  Google Scholar 

  • Thouret J-C, Finizola A, Fornari M, Suni J, Legeley-Padovani A, Frechen M (2001) Geology of El Misti volcano nearby the city of Arequipa, Peru. Geol Soc Am Bull 113:1593–1610

    Article  Google Scholar 

  • Tilton GR, Barreiro BA (1980) Origin of lead in Andean calcalkaline lavas, southern Peru. Science 210:1245–1247

    Article  Google Scholar 

  • Todt W, Cliff RA, Hanser A, Hofmann AW (1996) Evaluation of a 202Pb–205Pb double spike for high-precision lead isotope analysis, in Earth Processes. In Reading the isotopic code (eds. A. Basu and S. Hart). AGU, pp. 429–437.

  • Vlastélic I, Staudacher T, Deniel C, Devidal JL, Devouard B, Finizola A, Télouk P (2013) Lead isotopes behavior in the fumarolic environment of the Piton de la Fournaise volcano (Réunion Island). Geochim Cosmochim Acta 100:297–314. https://doi.org/10.1016/j.gca.2012.09.016

    Article  Google Scholar 

  • Wörner G, Moorbath S, Harmon RS (1992) Andean cenozoic volcanics reflect basement isotopic domains. Geology 20:1103–1106

    Article  Google Scholar 

  • Zelenski M, Simakin A, Taran Y, Kamenetsky VS, Malik N (2021) Partitioning of elements between high-temperature, low-density aqueous fluid and silicate melt as derived from volcanic gas geochemistry. Geochim Cosmochim Acta 295(112):134. https://doi.org/10.1016/j.gca.2020.12.011

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their constructive comments and William W Chadwick for handling the manuscript. IV acknowledges OVI personnel for their welcome in Arequipa. This is Laboratory of Excellence ClerVolc contribution number 517.

Funding

This research was financed by the Institut de Recherche pour le Développement, the French Government Laboratory of Excellence initiative n° ANR-10-LABX-0006, the Region Auvergne and the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Vlastelic.

Additional information

Editorial responsibility: W. W. Chadwick, Jr.; Deputy Executive Editor: L. Pioli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlastelic, I., Apaza, F., Masias, P. et al. Probing the hidden magmatic evolution of El Misti volcano (Peru) with the Pb isotope composition of fumaroles. Bull Volcanol 84, 17 (2022). https://doi.org/10.1007/s00445-021-01521-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-021-01521-9

Keywords

Navigation