Skip to main content
Log in

Standardized analysis of juvenile pyroclasts in comparative studies of primary magma fragmentation: 2. Choice of size fraction and method optimization for particle cross-sections

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The morphological and textural features of juvenile pyroclasts record crucial details on magma conditions at the time of fragmentation. Their study is therefore essential to better understand the dynamics of explosive eruptions. Unfortunately, the absence of a standardized protocol of investigation hinders data reproducibility and comparison among different laboratories. Here we focus on morphometric parameters, 2D crystallinity and 2D vesicularity resulting from cross-section analysis of juvenile particles using backscattered electron imaging, and address the following questions: (i) how to prepare polished epoxy grain mounts, (ii) which pixel density to be used, (iii) how to facilitate image preparation and image analysis, (iv) which sample size is necessary to obtain statistically robust results, and (v) what is the optimum size fraction for analysis. We test juvenile particles in grain size bins ranging from 2–1 mm (− 1 to 0ɸ) to 88–63 µm (+ 3.5 to + 4ɸ), using samples from the 1977 Ukinrek eruption. We find that the required resolution ranges from 75 000 to 10 000 pixels per particle, depending on the size fraction, higher than previously postulated. In the same size ranges, less than 50 grains per size fraction and sample are needed to get robust averages. Based on theoretical, empirical, and practical considerations, we propose 0.71–0.5 mm (+ 0.5 to + 1ɸ) as the optimum size fraction to be analyzed as particle cross-sections in standardized comparative studies of magma fragmentation. We provide a detailed guide for preparing polished epoxy grain mounts and introduce a software package (PASTA) for semi-automated image preparation, image processing, and measurement of morphological and textural parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Avery MR, Panter KS, Gorsevski PV (2017) Distinguishing styles of explosive eruptions at Erebus, Redoubt and Taupo volcanoes using multivariate analysis of ash morphometrics. J Volcanol Geotherm Res 332:1–13

    Article  Google Scholar 

  • Bagheri GH, Bonadonna C, Manzella I, Vonlanthen P (2015) On the characterization of size and shape of irregular particles. Powder Technol 270:141–153

    Article  Google Scholar 

  • Büttner R, Dellino P, Zimanowski B (1999) Identifying magma-water interaction from the surface features of ash particles. Nature 401:688–690

    Article  Google Scholar 

  • Büttner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments. J Geophys Res Solid Earth 107(B11):ECV 5–1–ECV 5–14

    Article  Google Scholar 

  • Cioni R, D’Oriano C, Bertagnini A (2008) Fingerprinting ash deposits of small scale eruptions by their physical and textural features. J Volcanol Geotherm Res 177:277–287

    Article  Google Scholar 

  • Cioni R, Pistolesi M, Bertagnini A, Bonadonna C, Hoskuldsson A, Scateni B (2014) Insights into the dynamics and evolution of the 2010 Eyjafjallajökull summit eruption (Iceland) provided by volcanic ash textures. Earth Planet Sci Lett 394(Supplement C):111–123

    Article  Google Scholar 

  • Cioni R, Sbrana A, Vecci R (1992) Morphologic features of juvenile pyroclasts from magmatic and phreatomagmatic deposits of Vesuvius. J Volcanol Geotherm Res 51:61–78

    Article  Google Scholar 

  • Colombier M, Scheu B, Kueppers U, Cronin SJ, Mueller SB, Hess K-U, Wadsworth FB, Tost M, Dobson KJ, Ruthensteiner B, Dingwell DB (2019) In situ granulation by thermal stress during subaqueous volcanic eruptions. Geology 47:179–182

  • Comida PP, Ross P-S (2021) PierCVolc/PASTA: PASTA project (Version 3.7, February 22, 2021). https://doi.org/10.5281/zenodo.3336335

  • Comida PP, Ross P-S, Dürig T, White JDL, Lefebvre NS (2021) SEM_raw_images_Comida_et_al_2021 (Version 2, October 5, 2021). https://doi.org/10.5281/zenodo.4639399

  • Dellino P, La Volpe L (1996) Image processing analysis in reconstructing fragmentation and transportation mechanisms of pyroclastic deposits. The case of Monte Pilato-Rocche Rosse eruptions, Lipari (Aeolian islands, Italy). J Volcanol Geotherm Res 71:13–29

    Article  Google Scholar 

  • Dellino P, Gudmundsson MT, Larsen G, Mele D, Stevenson JA, Thordarson T, Zimanowski B (2012) Ash from the Eyjafjallajökull eruption (Iceland): fragmentation processes and aerodynamic behavior. J Geophys Res 117:B00C04. https://doi.org/10.1029/2011JB008726

    Article  Google Scholar 

  • D’Oriano C, Bertagnini A, Cioni R, Pompilio M (2014) Identifying recycled ash in basaltic eruptions. Sci Rep 4:5851

    Article  Google Scholar 

  • Dioguardi F, Mele D, Dellino P, Dürig T (2017) The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography. J Volcanol Geotherm Res 329:41–53

    Article  Google Scholar 

  • Durant AJ, Rose WI, Sarna-Wojcicki AM, Carey S, Volentik ACM (2009) Hydrometeor-enhanced tephra sedimentation: constraints from the 18 May 1980 eruption of Mount St. Helens. J Geophys Res 114:B03204

    Google Scholar 

  • Dürig T, Zimanowski B (2012) ‘“Breaking news”’ on the formation of volcanic ash: fracture dynamics in silicate glass. Earth Planet Sci Lett 335–336:1–8

    Article  Google Scholar 

  • Dürig T, Mele D, Dellino P, Zimanowski B (2012) Comparative analyses of glass fragments from brittle fracture experiments and volcanic ash particles. Bull Volc 74:691–704

    Article  Google Scholar 

  • Dürig T, Bowman MH, White JD, Murch A, Mele D, Verolino A, Dellino P (2018) PARTIcle Shape ANalyzer PARTISAN–an open source tool for multi-standard two-dimensional particle morphometry analysis. Ann Geophys-Italy 61:31

    Google Scholar 

  • Dürig T, Schmidt LS, White JDL, Bowman MH (2020a) DendroScan: an open source tool to conduct comparative statistical tests and dendrogrammatic analyses on particle morphometry. Sci Rep 10:article 21682

    Article  Google Scholar 

  • Dürig T, White JDL, Zimanowski B, Büttner R, Murch A, Carey RJ (2020b) Deep-sea fragmentation style of Havre revealed by dendrogrammatic analyses of particle morphometry. Bull Volc 82:article 67

    Article  Google Scholar 

  • Dürig T, White JDL, Murch AP, Zimanowski B, Büttner R, Mele D, Dellino P, Carey RJ, Schmidt LS, Spitznagel N (2020c) Deep-sea eruptions boosted by induced fuel–coolant explosions. Nat Geosci 13:498–503

    Article  Google Scholar 

  • Dürig T, Bowman HM (2021) lsschmidt/PARTISAN (Version 2.0, March 10, 2021). https://doi.org/10.5281/zenodo.4593833

  • Dürig T, Ross P-S, Dellino P, White JDL, Mele D, Comida PP (2021) A review of statistical tools for morphometric analysis of juvenile pyroclasts. Bull Volc 83:79

  • Freundt A, Rosi M (1998) From magma to tephra. Elsevier, New York

    Google Scholar 

  • Heiken G (1972) Morphology and petrography of volcanic ashes. Geol Soc Am Bull 83:1961–1988

    Article  Google Scholar 

  • Heiken G, Wohletz K (1985) Volcanic ash. University of California Press, Berkeley

    Google Scholar 

  • Hornby AJ (2018) IPC shape macro (Version 1.0.2, September 28, 2018). https://doi.org/10.5281/zenodo.1438445

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volc 51:451–462

  • Jordan S, Dürig T, Cas RAF, Zimanowski B (2014) Processes controlling the shape of ash particles: results of statistical IPA. J Volcanol Geotherm Res 288:19–27

    Article  Google Scholar 

  • Kienle J, Kyle PR, Self S, Motyka RJ, Lorenz V (1980) Ukinrek Maars, Alaska, I. April 1977 eruption sequence, petrology and tectonic setting. J Volcanol Geotherm Res 7:11–37

    Article  Google Scholar 

  • Lautze NC, Houghton BF (2007) Linking variable explosion style and magma textures during 2002 at Stromboli volcano, Italy. Bull Volc 69:445–460

  • Leibrandt S, Le Pennec J-L (2015) Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications. J Volcanol Geotherm Res 297:11–27

    Article  Google Scholar 

  • Liu EJ, Cashman KV, Rust AC (2015) Optimising shape analysis to quantify volcanic ash morphology. GeoResJ 8:14–30

    Article  Google Scholar 

  • Liu EJ, Cashman KV, Rust AC, Höskuldsson A (2017) Contrasting mechanisms of magma fragmentation during coeval magmatic and hydromagmatic activity: the Hverfjall Fires fissure eruption, Iceland. Bull Volc 79:article 68

    Article  Google Scholar 

  • Mele D, Dellino P, Sulpizio R, Braia G (2011) A systematic investigation on the aerodynamics of ash particles. J Volcanol Geotherm Res 203:1–11

    Article  Google Scholar 

  • Mele D, Dioguardi F (2018) The grain size dependency of vesicular particle shapes strongly affects the drag of particles. First results from microtomography investigations of Campi Flegrei fallout deposits. J Volcanol Geotherm Res 353:18–24

    Article  Google Scholar 

  • Mele D, Dioguardi F, Dellino P (2018) A study on the influence of internal structures on the shape of pyroclastic particles by X-ray microtomography investigations. Ann Geophys-Italy 61:AC27

    Google Scholar 

  • Ort MH, Lefebvre NS, Neal CA, McConnell VS, Wohletz KH (2018) Linking the Ukinrek 1977 maar-eruption observations to the tephra deposits: new insights into maar depositional processes. J Volcanol Geotherm Res 360:36–60

    Article  Google Scholar 

  • Porritt L, Russell J, Quane S (2012) Pele’s tears and spheres: examples from Kilauea Iki. Earth Planet Sci Lett 333:171–180

    Article  Google Scholar 

  • Rausch J, Grobéty B, Vonlanthen P (2015) Eifel maars: quantitative shape characterization of juvenile ash particles (Eifel Volcanic Field, Germany). J Volcanol Geotherm Res 291:86–100

    Article  Google Scholar 

  • Ross P-S, Dürig T, Comida PP, Lefebvre NS, White JDL, Andronico D, Thivet S, Eychenne J, Gurioli L (2021) Standardized analysis of juvenile pyroclasts in comparative studies of primary magma fragmentation; 1. Overview and workflow. Bull Volc. https://doi.org/10.1007/s00445-021-01516-6

  • Rust AC, Cashman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res 116(B11) https://doi.org/10.1029/2011JB008494

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676

    Article  Google Scholar 

  • Schipper CI, Castro JM, Tuffen H, James MR, How P (2013) Shallow vent architecture during hybrid explosive-effusive activity at Cordón Caulle (Chile, 2011–12): evidence from direct observations and pyroclast textures. J Volcanol Geotherm Res 262:25–37

    Article  Google Scholar 

  • Schmith J, Höskuldsson Á, Holm PM (2017) Grain shape of basaltic ash populations: implications for fragmentation. Bull Volc 79:article 14

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  Google Scholar 

  • Shea T, Houghton B, Gurioli L, Cashman K, Hammer J, Hobden B, Stovall W, Carey R (2010a) SEM image processing with Photoshop. University of Hawaii and University of Oregon, USA. http://www.soest.hawaii.edu/GG/FACULTY/tshea/foams/methodsimrec.html

  • Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010b) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190:271–289

    Article  Google Scholar 

  • Verolino A, White JDL, Dürig T, Cappuccio F (2019) Black Point – pyroclasts of a Surtseyan eruption show no change during edifice growth to the surface from 100 m water depth. J Volcanol Geotherm Res 384:85–102

    Article  Google Scholar 

  • Vonlanthen P, Rausch J, Ketcham RA, Putlitz B, Baumgartner LP, Grobéty B (2015) High-resolution 3D analyses of the shape and internal constituents of small volcanic ash particles: the contribution of SEM micro-computed tomography (SEM micro-CT). J Volcanol Geotherm Res 293:1–12

    Article  Google Scholar 

  • White J, Houghton B (2006) Primary volcaniclastic rocks. Geology 34:677–680

    Article  Google Scholar 

  • Zimanowski B, Büttner R, Lorenz V, Häfele HG (1997) Fragmentation of basaltic melt in the course of explosive volcanism. J Geophys Res Solid Earth 102:803–814

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ikbel Mouedhen, Philippe Girard, and Arnaud De Coninck for the support during the development of the polishing technique. We acknowledge Caroline Bélanger, Sarah Galloway, and Félix Gagnon for the support in sample preparation and data processing. We thank Jacopo Taddeucci, Lucy Porritt and Pierre Francus for their comments on a draft of this paper. We thank Erin Fitch, an anonymous reviewer, and associate editor Benjamin J. Andrews for constructive journal reviews.

Funding

This study was funded by a Discovery Grant to PSR from the Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN-2015–06782). TD is supported by the Icelandic Research Fund (Rannís), grant Nr. 206527–051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Comida.

Additional information

Editorial responsibility: B.J. Andrews; Deputy Executive Editor: L. Pioli

This paper constitutes part of a topical collection: What pyroclasts can tell us

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comida, P.P., Ross, PS., Dürig, T. et al. Standardized analysis of juvenile pyroclasts in comparative studies of primary magma fragmentation: 2. Choice of size fraction and method optimization for particle cross-sections. Bull Volcanol 84, 14 (2022). https://doi.org/10.1007/s00445-021-01517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-021-01517-5

Keywords

Navigation