Skip to main content

Advertisement

Log in

Surface roughness characterization of the 2014–2015 Holuhraun lava flow-field in Iceland: implications for facies mapping and remote sensing

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Surface roughness is a commonly used parameter for the quantitative analysis and characterization of geological terrains on Earth, as well as on other planetary bodies, particularly where detailed optical data may not be available. Here, we statistically investigate if surface roughness can be used to distinguish between different lava facies in remote sensing data by examining the entire 2014–2015 Holuhraun lava flow-field in Iceland. Root-mean-square (RMS) height deviation, Hurst exponents, and breakpoints were calculated to quantify the surface roughness characteristics of eight facies using stereo-derived topographic datasets at three different pixel scales, ranging from 0.05 to 0.5 m/pixel. We show that most of the investigated lava facies (rubbly, spiny, undifferentiated rubbly–spiny, shelly, pāhoehoe, and flat-lying–knobby) are indistinguishable by surface roughness down to the 5 cm baseline, with the exception of topography-building facies like the vent-proximal edifice and the exceptionally blocky channel interior facies. Additionally, we considered baselines corresponding to radar S-band (10 cm), L-band (20 cm), and P-band (90 cm). Our findings imply that when transitional lava types are considered in addition to traditional end-members, topographic roughness data, including RMS height deviation and Hurst exponent values alone, cannot be used to uniquely identify lava facies at these baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amatulli G, Domisch S, Tuanmu M-N, Parmentier B, Ranipeta A, Malczyk J, Jetz W (2018) A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci Data 5(1):180040

    Google Scholar 

  • Aufaristama M, Höskuldsson Á, Ulfarsson MO, Jónsdóttir I, Thordarson T (2020) Lava flow roughness on the 2014–2015 lava flow-field at Holuhraun, Iceland, derived from airborne LiDAR and photogrammetry. Geosciences 10(4):125

    Google Scholar 

  • Belton MJS, Klaasen KP, Clary MC, Anderson JL, Anger CD, Carr MH, Chapman CR, Davies ME, Greeley R, Anderson D, Bolef LK, Townsend TE, Greenberg R, Head JW, Neukum G, Pilcher CB, Veverka J, Gierasch PJ, Fanale FP, Ingersoll AP, Masursky H, Morrison D, Pollack JB (1992) The Galileo Solid-State Imaging experiment. Space Sci Rev 60(1):413–455

    Google Scholar 

  • Bondarenko NV, Kreslavsky MA, Head JW (2006) North-south roughness anisotropy on Venus from the Magellan Radar Altimeter: correlation with geology. J Geophys Res Planets 111(E6):E06S12

    Google Scholar 

  • Bonny E, Thordarson T, Wright R, Höskuldsson A, Jónsdóttir I (2018) The volume of lava erupted during the 2014 to 2015 eruption at Holuhraun, Iceland: a comparison between satellite- and ground-based measurements. J Geophys Res Solid Earth 123(7):5412–5426

    Google Scholar 

  • Byrne PK, Ostrach LR, Fassett CI, Chapman CR, Denevi BW, Evans AJ, Klimczak C, Banks ME, Head JW, Solomon SC (2016) Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys Res Lett 43(14):7408–7416

    Google Scholar 

  • Byrnes JM, Crown DA (2002) Morphology, stratigraphy, and surface roughness properties of Venusian lava flow fields. J Geophys Res Planets 107(E10):9-1-9–22

    Google Scholar 

  • Campbell BA (2002) Radar remote sensing of planetary surfaces. Cambridge University Press, New York, p 342

    Google Scholar 

  • Campbell BA, Ghent RR, Shepard MK (2003) Limits on inference of Mars small-scale topography from MOLA data. Geophys Res Lett 30(3):1115

    Google Scholar 

  • Campbell BA, Hawke BR, Carter LM, Ghent RR, Campbell DB (2009) Rugged lava flows on the Moon revealed by Earth-based radar. Geophys Res Lett 36(22):L22201

    Google Scholar 

  • Campbell BA, Shepard MK (1996) Lava flow surface roughness and depolarized radar scattering. J Geophys Res Planets 101(E8):18941–18951

    Google Scholar 

  • Cas R, Wright J (1988) Volcanic successions modern and ancient. Springer Netherlands, pp XVI, 528

  • Chase CG (1992) Fluvial landsculpting and the fractal dimension of topography. Geomorphology 5(1):39–57

    Google Scholar 

  • Chin G, Brylow S, Foote M, Garvin J, Kasper J, Keller J, Litvak M, Mitrofanov I, Paige D, Raney K, Robinson MS, Sanin A, Smith DE, Spence H, Spudis P, Stern SA, Zuber MT (2007) Lunar reconnaissance orbiter overview: the instrument suite and mission. Space Sci Rev 129(4):391–419

    Google Scholar 

  • Davies AG (2003) Volcanism on Io: estimation of eruption parameters from Galileo NIMS data. J Geophys Res Planets 108(E9):5106

    Google Scholar 

  • Dietterich HR, Cashman KV, Rust AC, Lev E (2015) Diverting lava flows in the lab. Nat Geosci 8(7):494–496

    Google Scholar 

  • Dirscherl M, Rossi C (2018) Geomorphometric analysis of the 2014–2015 Bárðarbunga volcanic eruption, Iceland. Remote Sens Environ 204:244–259

    Google Scholar 

  • Einarsson T (1949) The flowing lava, studies of its main physical and chemical properties. The Eruption of Hekla 1947–1948, IV, 3. In: Reykjavík

  • Ermakov AI, Kreslavsky MA, Scully JEC, Hughson KHG, Park RS (2019) Surface roughness and gravitational slope distributions of vesta and ceres. J Geophys Res Planets 124(1):14–30

    Google Scholar 

  • Farr TG (1992) Microtopographic evolution of lava flows at Cima Volcanic Field, Mojave Desert, California. J Geophys Res Solid Earth 97(B11):15171–15179

    Google Scholar 

  • Favalli M, Fornaciai A, Nannipieri L, Harris A, Calvari S, Lormand C (2018) UAV-based remote sensing surveys of lava flow fields: a case study from Etna’s 1974 channel-fed lava flows. Bull Volcanol 80(3):29

    Google Scholar 

  • Ghail RC, Hall D, Mason PJ, Herrick RR, Carter LM, Williams E (2018) VenSAR on EnVision: taking earth observation radar to Venus. Int J Appl Earth Obs Geoinf 64:365–376

    Google Scholar 

  • Gillot PY, Nativel P (1989) Eruptive history of the Piton de la Fournaise volcano, Reunion Island, Indian Ocean. J Volcanol Geoth Res 36(1):53–65

    Google Scholar 

  • Golombek M, Kipp D, Warner N, Daubar IJ, Fergason R, Kirk RL, Beyer R, Huertas A, Piqueux S, Putzig NE, Campbell BA, Morgan GA, Charalambous C, Pike WT, Gwinner K, Calef F, Kass D, Mischna M, Ashley J, Bloom C, Wigton N, Hare T, Schwartz C, Gengl H, Redmond L, Trautman M, Sweeney J, Grima C, Smith IB, Sklyanskiy E, Lisano M, Benardini J, Smrekar S, Lognonné P, Banerdt WB (2016) Selection of the InSight landing site. Space Sci Rev 211:5–95

    Google Scholar 

  • Golombek MP, Grant JA, Parker TJ, Kass DM, Crisp JA, Squyres SW, Haldemann AFC, Adler M, Lee WJ, Bridges NT, Arvidson RE, Carr MH, Kirk RL, Knocke PC, Roncoli RB, Weitz CM, Schofield JT, Zurek RW, Christensen PR, Fergason RL, Anderson FS, Rice JW (2003) Selection of the Mars Exploration Rover landing sites. J Geophys Res (Planets) 108:8072

    Google Scholar 

  • Gordon HP, Peter GF, William TKJ, Raney RK, Laurence AS (1991) Magellan: radar performance and data products. Science 252(5003):260–265

    Google Scholar 

  • Gudmundsson MT, Jónsdóttir K, Hooper A, Holohan EP, Halldórsson SA, Ófeigsson BG, Cesca S, Vogfjörd KS, Sigmundsson F, Högnadóttir T, Einarsson P, Sigmarsson O, Jarosch AH, Jónasson K, Magnússon E, Hreinsdóttir S, Bagnardi M, Parks MM, Hjörleifsdóttir V, Pálsson F, Walter TR, Schöpfer MPJ, Heimann S, Reynolds HI, Dumont S, Bali E, Gudfinnsson GH, Dahm T, Roberts MJ, Hensch M, Belart JMC, Spaans K, Jakobsson S, Gudmundsson GB, Fridriksdóttir HM, Drouin V, Dürig T, Aðalgeirsdóttir G, Riishuus MS, Pedersen GBM, van Boeckel T, Oddsson B, Pfeffer MA, Barsotti S, Bergsson B, Donovan A, Burton MR, Aiuppa A (2016) Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science 353(6296):aaf8988

    Google Scholar 

  • Guilbaud M-N, Self S, Thordarson T, Blake S, Manga M, Ventura G (2005) Morphology, surface structures, and emplacement of lavas produced by Laki, A.D. 1783–1784. In: Kinematics and dynamics of lava flows, Michael Manga, Guido Ventura. Geological Society of America, pp 81–102

  • Haack H, Rossi MJ, Dall J (2006) SAR mapping of Burfellshraun: a terrestrial analog for recent volcanism on Mars. J Geophys Res Planets (1991–2012) 111(E6):E06S13

    Google Scholar 

  • Halldórsson SA, Bali E, Hartley ME, Neave DA, Peate DW, Guðfinnsson GH, Bindeman I, Whitehouse MJ, Riishuus MS, Pedersen GBM, Jakobsson S, Askew R, Gallagher CR, Guðmundsdóttir ER, Gudnason J, Moreland WM, Óskarsson BV, Nikkola P, Reynolds HI, Schmith J, Thordarson T (2018) Petrology and geochemistry of the 2014–2015 Holuhraun eruption, central Iceland: compositional and mineralogical characteristics, temporal variability and magma storage. Contrib Miner Petrol 173(8):64

    Google Scholar 

  • Harris AJL, Favalli M, Mazzarini F, Hamilton CW (2009) Construction dynamics of a lava channel. Bull Volcanol 71(4):459

    Google Scholar 

  • Hawkins SE, Boldt JD, Darlington EH, Espiritu R, Gold RE, Gotwols B, Grey MP, Hash CD, Hayes JR, Jaskulek SE, Kardian CJ, Keller MR, Malaret ER, Murchie SL, Murphy PK, Peacock K, Prockter LM, Reiter RA, Robinson MS, Schaefer ED, Shelton RG, Sterner RE, Taylor HW, Watters TR, Williams BD (2007) The Mercury dual imaging system on the MESSENGER spacecraft. Space Sci Rev 131(1):247–338

    Google Scholar 

  • Head JW, Murchie SL, Prockter LM, Robinson MS, Solomon SC, Strom RG, Chapman CR, Watters TR, McClintock WE, Blewett DT, Gillis-Davis JJ (2008) Volcanism on Mercury: evidence from the first MESSENGER flyby. Science 321(5885):69–72

    Google Scholar 

  • Head JW, Wilson L (2017) Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations). Icarus 283:176–223

    Google Scholar 

  • Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106(3):351–370

    Google Scholar 

  • Howard AD, Craddock RA (1998) Simulation of erosion of ancient cratered terrain on Mars In: Lunar Planet. Sci. Conf [CD-ROM], XXIX, Abstract 1323

  • Jaenicke J, Münzer U, Mayer C, Minet C, Franke J, Gudmundsson Á (2014) Überwachung isländischer Vulkane mit innovativen Fernerkundungs-Technologien und 3D Visualisierung. In: Gemeinsame Tagung 2014 der DGfK, der DGPF, der GfGI und des GiN. pp 1–14

  • James MR, Carr B, D’Arcy F, Diefenbach A, Dietterich HR, Fornaciai A, Lev E, Liu E, Pieri D, Rodgers M, Smets B, Terada A, von Aulock F, Walter TR, Wood K, Zorn E (2020) Volcanological applications of unoccupied aircraft systems (UAS): developments, strategies, and future challenges. Volcanica 3(1):67–114

    Google Scholar 

  • Keszthelyi L, Thordarson T, McEwen A, Haack H, Guilbaud M-N, Self S, Rossi MJ (2004) Icelandic analogs to Martian flood lavas. Geochem Geophys Geosyst 5(11):Q11014

  • Khan SD, Heggy E, Fernandez J (2007) Mapping exposed and buried lava flows using synthetic aperture and ground-penetrating radar in Craters of the Moon lava field. Geophysics 72:B161

    Google Scholar 

  • Kreslavsky MA, Head JW (2000) Kilometer-scale roughness of Mars: results from MOLA data analysis. J Geophys Res Planets 105(E11):26695–26711

    Google Scholar 

  • Kreslavsky MA, Head JW, Neumann GA, Zuber MT, Smith DE (2014) Kilometer-scale topographic roughness of Mercury: correlation with geologic features and units. Geophys Res Lett 41(23):8245–8251

    Google Scholar 

  • Landais F, Schmidt F, Lovejoy S (2019) Multifractal topography of several planetary bodies in the solar system. Icarus 319:14–20

    Google Scholar 

  • Lopes RMC, Fagents SA, Mitchell KL, Gregg TKP (2013) Planetary volcanism. In: Lopes RMC, Fagents SA, Gregg TKP (eds) Modeling Volcanic Processes: The Physics and Mathematics of Volcanism. Cambridge University Press, Cambridge, pp 384–413

    Google Scholar 

  • Lopes RMC, Spencer JR (2007) Io after Galileo. Springer-Verlag Berlin Heidelberg, pp XXIII, 374

  • Luo WL, Arvidson RE, Sultan M, Becker R, Crombie MK, Sturchio N, El Alfy Z (1997) Ground-water sapping processes, Western Desert, Egypt. Geol Soc Am Bull 109(1):43–62

    Google Scholar 

  • Macdonald GA (1953) Pahoehoe, aa, and block lava. Am J Sci 251(3):169–191

    Google Scholar 

  • Mazzarini F, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2005) Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data. Geophys Res Lett 32(4):L04305

  • McEwen AS, Eliason EM, Bergstrom JW, Bridges NT, Hansen CJ, Delamere WA, Grant JA, Gulick VC, Herkenhoff KE, Keszthelyi L, Kirk RL, Mellon MT, Squyres SW, Thomas N, Weitz CM (2007) Mars reconnaissance orbiter’s high resolution imaging science experiment (HiRISE). J Geophys Res Planets 112(E5):n/a-n/a

    Google Scholar 

  • Melosh HJ (2011) Volcanism. In: Melosh HJ (ed) Planetary Surface Processes. Cambridge University Press, Cambridge, pp 169–221

    Google Scholar 

  • Morris AR, Anderson FS, Mouginis-Mark PJ, Haldemann AFC, Brooks BA, Foster J (2008) Roughness of Hawaiian volcanic terrains. J Geophys Res Planets 113(E12):E12007

    Google Scholar 

  • Münzer Ü, Jaenicke J, Eineder M, Minet C, Braun L, Mayer C, Siegert F, Franke J (2016) Anwendung neuer Methoden mit hochauflösenden Fernerkundungs-daten (TerraSAR-X, TanDEM-X, RapidEye, UltraCam, HRSC) zur Früherkennung subglazialer Vulkanausbrüche auf Island. Final Report, pp. 1–85. In, pp 1–85

  • Neish CD, Hamilton CW, Hughes SS, Nawotniak SK, Garry WB, Skok JR, Elphic RC, Schaefer E, Carter LM, Bandfield JL, Osinski GR, Lim D, Heldmann JL (2017) Terrestrial analogues for lunar impact melt flows. Icarus 281:73–89

    Google Scholar 

  • Nimmo F, Schenk PM (2007) Stereo and photoclinometric comparisons and topographic roughness of Europa. In: Lunar and Planetary Science XXXIX, #1464. Houston, The Woodlands

  • Otto KA, Matz K-D, Schröder SE, Parekh R, Krohn K, Honda R, Kameda S, Jaumann R, Schmitz N, Stephan K, Sugita S, Tatsumi E, Ho T-M, Koncz A, Trauthan F, Cho Y, Hayakawa M, Honda C, Kouyama T, Matsuoka M, Morota T, Mottola S, Ogawa K, Preusker F, Sakatani N, Sawada H, Scholten F, Suzuki H, Yamada M, Yokota Y, Yoshioka K (2020) Surface roughness of asteroid (162173) Ryugu and comet 67P/Churyumov–Gerasimenko inferred from in situ observations. Mon Not R Astron Soc 500(3):3178–3193

    Google Scholar 

  • Pedersen GBM, Höskuldsson A, Dürig T, Thordarson T, Jónsdóttir I, Riishuus MS, Óskarsson BV, Dumont S, Magnusson E, Gudmundsson MT, Sigmundsson F, Drouin VJPB, Gallagher C, Askew R, Gudnason J, Moreland WM, Nikkola P, Reynolds HI, Schmith J (2017) Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J Volcanol Geoth Res 340:155–169

    Google Scholar 

  • Peterson DW, Tilling RI (1980) Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: field observations and key factors. J Volcanol Geoth Res 7(3):271–293

    Google Scholar 

  • Richardson JA, Bleacher JE, Connor CB, Glaze LS (2021) Small volcanic vents of the Tharsis Volcanic Province, Mars. J Geophys Res Planets 126(2):e2020JE006620

    Google Scholar 

  • Riker JM, Cashman KV, Kauahikaua JP, Montierth CM (2009) The length of channelized lava flows: insight from the 1859 eruption of Mauna Loa Volcano, Hawai’i. J Volcanol Geoth Res 183(3):139–156

    Google Scholar 

  • Robinson MS, Brylow SM, Tschimmel M, Humm D, Lawrence SJ, Thomas PC, Denevi BW, Bowman-Cisneros E, Zerr J, Ravine MA, Caplinger MA, Ghaemi FT, Schaffner JA, Malin MC, Mahanti P, Bartels A, Anderson J, Tran TN, Eliason EM, McEwen AS, Turtle E, Jolliff BL, Hiesinger H (2010) Lunar reconnaissance orbiter camera (LROC) instrument overview. Space Sci Rev 150(1):81–124

    Google Scholar 

  • Rodriguez Sanchez-Vahamonde C, Neish C (2021) The surface texture of martian lava flows as inferred from their decimeter- and meter-scale roughness. Planet Sci J 2(1):15

    Google Scholar 

  • Rosenburg MA, Aharonson O, Head JW, Kreslavsky MA, Mazarico E, Neumann GA, Smith DE, Torrence MH, Zuber MT (2011) Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter. J Geophys Res Planets 116(E2):E02001

    Google Scholar 

  • Rowland SK, Walker GPL (1987) Toothpaste lava: characteristics and origin of a lava structural type transitional between pahoehoe and aa. Bull Volcanol 49(4):631–641

    Google Scholar 

  • Rumpf ME, Lev E, Wysocki R (2018) The influence of topographic roughness on lava flow emplacement. Bull Volcanol 80(7):63

    Google Scholar 

  • Schaefer EI, Hamilton CW, Neish CD, Sori MM, Bramson AM, Beard SP (2021) Reexamining the potential to classify lava flows from the fractality of their margins. J Geophys Res Solid Earth 126(5):e2020JB020949

    Google Scholar 

  • Scheidt SP, Hamilton CW (2019) Unmanned aerial system (UAS)-derived orthoimage mosaics and digital terrain models of the northeastern portion of the 2014–2015 Holuhraun lava flow-field, Iceland: data acquired from 2015 to 2018. In: University of Arizona, Department of Planetary Sciences, Lunar and Planetary Laboratory. https://doi.org/10.25422/azu.data.c.5214641

  • Self S, Coffin MF, Rampino MR, Wolff JA (2015) Chapter 24 - large igneous provinces and flood basalt volcanism. In: Sigurdsson H (ed) The Encyclopedia of Volcanoes, 2nd edn. Academic Press, Amsterdam, pp 441–455

    Google Scholar 

  • Shepard MK, Campbell BA, Bulmer MH, Farr TG, Gaddis LR, Plaut JJ (2001) The roughness of natural terrain: a planetary and remote sensing perspective. J Geophys Res Planets 106(E12):32777–32795

    Google Scholar 

  • Smrekar SE, Hensley S, Dyar MD, Helbert J, Andrews-Hanna J, Breuer D, Buczkowski D, Campbell B, Davaille A, Fasset C, Gilmore M, Herrick R, Iess L, Jozwiak L, Kataria T, Konopliv A, Mastrogiuseppe M, Mazerico E, Mueller N, Nunes D, Raguso M, Stock J, Stofan E, Tsang C, Whitten J, Widemann T, Zebker H (2021) VERITAS (Venus Emissivity, Radio Science, In-SAR, Topography, and Spectroscopy): a proposed discovery mission. In: 52nd Lunar and Planetary Science Conference. Held virtually. #2548

  • Smrekar SE, Stofan ER, Mueller N, Treiman A, Elkins-Tanton L, Helbert J, Piccioni G, Drossart P (2010) Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328(5978):605–608

    Google Scholar 

  • Solomon SC, McNutt RL, Gold RE, Acuña MH, Baker DN, Boynton WV, Chapman CR, Cheng AF, Gloeckler G, Head JW, Krimigis SM, McClintock WE, Murchie SL, Peale SJ, Phillips RJ, Robinson MS, Slavin JA, Smith DE, Strom RG, Trombka JI, Zuber MT (2001) The MESSENGER mission to Mercury: scientific objectives and implementation. Planet Space Sci 49(14):1445–1465

    Google Scholar 

  • Soule SA, Cashman KV, Kauahikaua JP (2004) Examining flow emplacement through the surface morphology of three rapidly emplaced, solidified lava flows, Kīlauea Volcano, Hawai’i. Bull Volcanol 66(1):1–14

    Google Scholar 

  • Steinbrügge G, Voigt JRC, Schroeder DM, Stark A, Haynes MS, Scanlan KM, Hamilton CW, Young DA, Hussmann H, Grima C, Blankenship DD (2020) The surface roughness of Europa derived from Galileo stereo images. Icarus 343:113669

    Google Scholar 

  • Stovall WK, Houghton BF, Harris AJL, Swanson DA (2009) A frozen record of density-driven crustal overturn in lava lakes: the example of Kīlauea Iki 1959. Bull Volcanol 71(3):313–318

    Google Scholar 

  • Susorney HCM, Barnouin OS, Ernst CM, Byrne PK (2017) The surface roughness of Mercury from the Mercury Laser Altimeter: investigating the effects of volcanism, tectonism, and impact cratering. J Geophys Res Planets 122(6):1372–1390

    Google Scholar 

  • Swanson DA (1973) Pahoehoe flows from the 1969–1971 Mauna Ulu Eruption, Kilauea Volcano, Hawaii. GSA Bull 84(2):615–626

    Google Scholar 

  • Thordarson T, Self S (1993) The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783–1785. Bull Volcanol 55(4):233–263

    Google Scholar 

  • Tolometti GD, Neish CD, Osinski GR, Hughes SS, Nawotniak SEK (2020) Interpretations of lava flow properties from radar remote sensing data. Planet Space Sci 190:104991

    Google Scholar 

  • Valentine GA, Connor CB (2015) Chapter 23 - basaltic volcanic fields. In: Sigurdsson H (ed) The Encyclopedia of Volcanoes, 2nd edn. Academic Press, Amsterdam, pp 423–439

    Google Scholar 

  • Voigt JRC, Hamilton CW (2018) Investigating the volcanic versus aqueous origin of the surficial deposits in Eastern Elysium Planitia, Mars. Icarus 309:389–410

    Google Scholar 

  • Voigt JRC, Hamilton CW (2021) Facies map for the 2014–2015 Holuhraun eruption in Iceland. In: University of Arizona, Department of Planetary Sciences, Lunar and Planetary Laboratory. https://doi.org/10.25422/azu.data.12971129.v3

  • Voigt JRC, Hamilton CW, Scheidt SP, Münzer U, Höskuldsson Á, Jónsdottir I, Thordarson T (2021a) Geomorphological characterization of the 2014–2015 Holuhraun lava flow-field in Iceland. J Volcanol Geotherm Res: 107278. 10.7210.101016/j.jvolgeores.102021.107278

  • Voigt JRC, Hamilton CW, Steinbrügge G, Höskuldsson Á, Jónsdottir I, Thordarson T (2021b) Linking effusion rates and lava morphologies for the 2014–2015 Holuhraun lava flow-field in Iceland. Geology. https://doi.org/10.1130/G49251.1

    Article  Google Scholar 

  • Walker GPL (1991) Structure, and origin by injection of lava under surface crust, of tumuli, “lava rises”, “lava-rise pits”, and “lava-inflation clefts” in Hawaii. Bull Volcanol 53(7):546–558

    Google Scholar 

  • Walker GPL, Thordarson T, Self S, Larsen G, Rowland SK, Höskuldsson Á (2009) The endogenous growth of pahoehoe lava lobes and morphology of lava-rise edges. In: Studies in Volcanology: The Legacy of George Walker. Geological Society of London

  • Westfall PH (2014) Kurtosis as peakedness, 1905 - 2014. R.I.P. Am Stat 68(3):191–195

    Google Scholar 

  • Whelley PL, Garry WB, Hamilton CW, Bleacher JE (2017) LiDAR-derived surface roughness signatures of basaltic lava types at the Muliwai a Pele Lava Channel, Mauna Ulu, Hawai’i. Bull Volcanol 79(11):75

    Google Scholar 

  • Whelley PL, Glaze LS, Calder ES, Harding DJ (2014) LiDAR-derived surface roughness texture mapping: application to Mount St. Helens Pumice plain deposit analysis. IEEE Trans Geosci Remote Sens 52(1):426–438

    Google Scholar 

  • Wilson L, Head JW (1994) Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev Geophys 32(3):221–263

    Google Scholar 

  • Wilson L, Head JW (2017) Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 1: Theory). Icarus 283:146–175

    Google Scholar 

  • Zurek RW, Smrekar SE (2007) An overview of the Mars Reconnaissance Orbiter (MRO) science mission. J Geophys Res Planets 112(E5):E05S01

Download references

Acknowledgements

We thank the editor, Michael James, and three anonymous reviewers for their valuable reviews, which greatly improved the manuscript. The authors also thank the Goddard Instrument Field Team (GIFT) for partially supporting J.R.C.V.’s participation in the field campaigns during the summers of 2018 and 2019; Ulrich Münzer for providing the UltraCam-Xp data within the project Iceland subglacial Volcanoes interdisciplinary early warning system (IsViews), managed by the Ludwig-Maximilians-University, Munich, and funded by the Bavarian Ministry of Economic Affairs and Media, Energy and Technology (ID 20-8-34102-15-2012); and the Vatnajökull National Park Service (Vatnajökulsþjóðgarður).

Funding

J.R.C.V. acknowledges the Geological Society of America (GSA) for supporting the field trip in 2016 with a Graduate Student Research Grant and the GSA Lipman Research Award, the Future Investigators in NASA Earth and Space Science and Technology (FINESST) program (Grant # NNH19ZDA001N-FINESST), and Jet Propulsion Laboratory’s Strategic University Research Partnership (SURP) program. C.W.H. acknowledges support from the NASA Planetary Science and Technology Through Analog Research (PSTAR) program (Grant # 80NSSC21K0011) and a Fulbright–National Science Foundation Arctic Scholarship administered by Fulbright–Iceland. S.P.S. acknowledges NASA award number 80GSFC21M0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana R. C. Voigt.

Additional information

Editorial responsibility: M.R. James

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voigt, J.R.C., Hamilton, C.W., Steinbrügge, G. et al. Surface roughness characterization of the 2014–2015 Holuhraun lava flow-field in Iceland: implications for facies mapping and remote sensing. Bull Volcanol 83, 82 (2021). https://doi.org/10.1007/s00445-021-01499-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-021-01499-4

Keywords

Navigation