Skip to main content

Advertisement

Log in

A multi-decadal view of the heat and mass budget of a volcano in unrest: La Soufrière de Guadeloupe (French West Indies)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Particularly in the presence of a hydrothermal system, many volcanoes output large quantities of heat through the transport of water from deep within the edifice to the surface. Thus, heat flux is a prime tool for evaluating volcanic activity and unrest. We review the volcanic unrest at La Soufrière de Guadeloupe (French West Indies) using an airborne thermal camera survey and in situ measurements of temperature and flow rate through temperature probes, Pitot-tube and MultiGAS measurements. We deduce mass and heat fluxes for the fumarolic, ground and thermal spring outputs and follow these over a period spanning 2000–2020. Our results are compared with published data and we performed a retrospective analysis of the temporal variations in heat flux over this period using the literature data. We find that the heat emitted by the volcano is 36.5 ± 7.9MW, of which the fumarolic heat flux is dominant at 28.3 ± 6.8 MW. Given a total heated area of 26 270 m2, this equates to a total heat flux density of 1366 ± 82 W/m2, which is amongst the highest established for worldwide volcanoes with hydrothermal systems, particularly for dome volcanoes. A major change at La Soufrière de Guadeloupe, however, is the development of a widespread region of ground heating at the summit where heat output has increased from 0.2 ± 1 MW in 2010 to 5.7 ± 0.9 MW in 2020. This change is concurrent with accelerating unrest at the volcano and the emergence of two new high-flux fumaroles in recent years. Our findings highlight the importance of continued and enhanced surveillance and research strategies at La Soufrière de Guadeloupe, the results of which can be used to better understand hydrothermal volcanic systems the world over.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.ipgp.fr/fr/ovsg/bulletins-mensuels-de-lovsg

  2. Observatoire Volcanologique et Simologique de la Guadeloupe

References

  • Allard P, Aiuppa A, Beauducel F, Gaudin D, di Napoli R, Calabrese S, Parello F, Crispi O, Hammouya G, Tamburello G (2014) Steam and gas emission rate from la soufrierè volcano, guadeloupe (lesser antilles): implications for the magmatic supply during degassing unrest. Chem Geol 384:76–93. https://doi.org/10.1016/j.chemgeo.2014.06.019

    Google Scholar 

  • Aubert M (1999) Practical evaluation of steady heat discharge from dormant active volcanoes: case study of Vulcarolo fissure (Moun Etna, Italy). J Volcanol Geoth Res 92(3–4):413–429. https://doi.org/10.1016/S0377-0273(99)00088-8

    Google Scholar 

  • Aubert M, Auby R, Bourlet F, Bourlet Y (1984) Contribution a la surveillance de l’activité de l’Etna à partir de l’étude des zones fumerolliennes̀. Bull Volcanol 47(4):1039–1050. https://doi.org/10.1007/BF01952359

    Google Scholar 

  • Berk A, Hawes F (2017) Validation of MODTRAN®;6 and its line-by-line algorithm. J Quant Spectrosc & Radiat Transfer 203:542–556. https://doi.org/10.1016/j.jqsrt.2017.03.004

    Google Scholar 

  • Bloomberg S, Werner C, Rissmann C, Mazot A, Horton T, Gravley D, Kennedy B, Oze C (2014) Soil CO2 emissions as a proxy for heat and mass flow assessment, taupō volcanic Zone, New Zealand. Geochem Geophys Geosyst 15(12):4885–4904. https://doi.org/10.1002/2014GC005327

    Google Scholar 

  • Boichu M, Villemant B, Boudon G (2011) Degassing at La Soufrierè de Guadeloupe volcano (Lesser Antilles) since the last eruptive crisis in 1975–77: result of a shallow magma intrusion? J Volcanol Geoth Res 203(3):102–112. https://doi.org/10.1016/j.jvolgeores.2011.04.007

    Google Scholar 

  • Bombrun M, Jessop DE, Harris AJL, Barra V (2018) An algorithm for the detection and characterisation of volcanic plumes using thermal camera imagery. J Volcanol Geoth Res 352:26–37. https://doi.org/10.1016/j.jvolgeores.2018.01.006

    Google Scholar 

  • Boudon G, Komorowski JC, Villemant B, Semet MP (2008) A new scenario for the last magmatic eruption of La Soufrière of Guadeloupe (Lesser Antilles) in 1530 AD: evidence from stratigraphy, radiocarbon dating and magmatic evolution of erupted products. J Volcanol Geoth Res 178(3):474–490. https://doi.org/10.1016/j.jvolgeores.2008.03.006

    Google Scholar 

  • Brombach T, Marini L, Hunziker J (2000) Geochemistry of the thermal springs and fumaroles of Basse-Terre Island, Guadeloupe, Lesser Antilles. Bull Volcanol 61(7):477–490. https://doi.org/10.1007/PL00008913

    Google Scholar 

  • Brothelande E, Finizola A, Peltier A, Delcher E, Komorowski JC, Di Gangi F, Borgogno G, Passarella M, Trovato C, Legendre Y (2014) Fluid circulation pattern inside La Soufrière volcano (Guadeloupe) inferred from combined electrical resistivity tomography, self-potential, soil temperature and diffuse degassing measurements. J Volcanol Geoth Res 288:105–122

    Google Scholar 

  • Chiodini G, Cioni R, Guidi M, Raco B, Marini L (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Appl Geochem 13(5):543–552. https://doi.org/10.1016/S0883-2927(97)00076-0

    Google Scholar 

  • Chiodini G, Frondini F, Cardellini C, Granieri D, Marini L, Ventura G (2001) CO2 Degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J Geophys Res-Solid Earth 106(B8):16213–16221. https://doi.org/10.1029/2001JB000246

    Google Scholar 

  • Chiodini G, Granieri D, Avino R, Caliro S, Costa A, Werner C (2005) Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. J Geophys Res-Solid Earth 110(B8):B08204. https://doi.org/10.1029/2004JB003542

    Article  Google Scholar 

  • Contini D, Robins A (2001) Water tank measurements of buoyant plume rise and structure in neutral crossflows. Atmos Environ 35(35):6105–6115. https://doi.org/10.1016/S1352-2310(01)00398-3

    Google Scholar 

  • Di Renzo V, Wohletz K, Civetta L, Moretti R, Orsi G, Gasparini P (2016) The thermal regime of the Campi Flegrei magmatic system reconstructed through 3D numerical simulations. J Volcanol Geoth Res 328:210–221. https://doi.org/10.1016/j.jvolgeores.2016.11.004

    Google Scholar 

  • Feuillard M (2011) La Soufrière de la Guadeloupe: un volcan et un peuple. Éd. Jasor

  • Feuillard M, Allegre C, Brandeis G, Gaulon R, Mouel JL, Mercier J, Pozzi J, Semet M (1983) The 1975–1977 crisis of la Soufrière de Guadeloupe (F.W.I): a still-born magmatic eruption. J Volcanol Geoth Res 16(3):317–334. https://doi.org/10.1016/0377-0273(83)90036-7

    Google Scholar 

  • Fischer TP, Chiodini G (2015) Volcanic, magmatic and hydrothermal gases. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The encyclopedia of volcanoes. Elsevier, chap 45, pp 779-797. https://doi.org/10.1016/B978-0-12-385938-9.00045-6

  • Gaudin D, Beauducel F, Allemand P, Delacourt C, Finizola A (2013) Heat flux measurement from thermal infrared imagery in low-flux fumarolic zones: example of the Ty fault (la Soufrière de Guadeloupe). J Volcanol Geoth Res 267(0):47–56. https://doi.org/10.1016/j.jvolgeores.2013.09.009

    Google Scholar 

  • Gaudin D, Finizola A, Delcher E, Beauducel F, Allemand P, Delacourt C, Brothelande E, Peltier A, Di Gangi F (2015) Influence of rainfalls on heat and steam fluxes of fumarolic zones: six months records along the Ty Fault (Soufrière of Guadeloupe, Lesser Antilles). J Volcanol Geoth Res 302:273–285. https://doi.org/10.1016/j.jvolgeores.2015.06.015

    Google Scholar 

  • Gaudin D, Beauducel F, Coutant O, Delacourt C, Richon P, de Chabalier JB, Hammouya G (2016) Mass and heat flux balance of La Soufrière volcano (Guadeloupe) from aerial infrared thermal imaging. J Volcanol Geoth Res 320:107–116. https://doi.org/10.1016/j.jvolgeores.2016.04.007

    Google Scholar 

  • Gibbings JC (1986) The systematic experiment, first edition edn. Cambridge University Press

  • Giggenbach WF (1975) A simple method for the collection and analysis of volcanic gas samples. Bull Volcanol 39:132–145. https://doi.org/10.1007/BF02596953

    Google Scholar 

  • Hardee HC (1982) Permeable convection above magma bodies. Tectonophysics 84(2–4):179–195. https://doi.org/10.1016/0040-1951(82)90159-7

    Google Scholar 

  • Harris AJL (2013) Thermal remote sensing of active volcanoes: a user’s manual. Cambridge University Press, Cambridge

    Google Scholar 

  • Harris AJL, Maciejewski AJH (2000) Thermal surveys of the vulcano fossa fumarole field 1994-1999: evidence for fumarole migration and sealing. J Volcanol Geoth Res 102(1–2):119–147. https://doi.org/10.1016/S0377-0273(00)00184-0

    Google Scholar 

  • Harris AJL, Stevenson DS (1997) Thermal observations of degassing open conduits and fumaroles at Stromboli and Vulcano using remotely sensed data. J Volcanol Geoth Res 76(3–4):175–198. https://doi.org/10.1016/S0377-0273(96)00097-2

    Google Scholar 

  • Harris AJL, Lodato L, Dehn J, Spampinato L (2009) Thermal characterization of the Vulcano fumarole field. Bull Volcanol 71(4):441–458. https://doi.org/10.1007/s00445-008-0236-8

    Google Scholar 

  • Harvey MC, Rowland JV, Chiodini G, Rissmann CF, Bloomberg S, Hernández P A, Mazot A, Viveiros F, Werner C (2015) Heat flux from magmatic hydrothermal systems related to availability of fluid recharge. J Volcanol Geoth Res 302:225–236. https://doi.org/10.1016/j.jvolgeores.2015.07.003

    Google Scholar 

  • Heap MJ, Kennedy BM, Pernin N, Jacquemard L, Baud P, Farquharson JI, Scheu B, Lavallée Y, Gilg HA, Letham-Brake M, Mayer K, Jolly AD, Reuschlé T, Dingwell DB (2015) Mechanical behaviour and failure modes in the Whakaari (White Island volcano) hydrothermal system, New Zealand. J Volcanol Geoth Res 295:26–42. https://doi.org/10.1016/j.jvolgeores.2015.02.012

    Google Scholar 

  • Heap MJ, Troll VR, Kushnir ARL, Gilg HA, Collinson ASD, Deegan FM, Darmawan H, Seraphine N, Neuberg J, Walter TR (2019) Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour. Nat Commun 10(1):5063. https://doi.org/10.1038/s41467-019-13102-8

    Google Scholar 

  • Heap MJ, Kushnir AR, Vasseur J, Wadsworth FB, Harlé P, Baud P, Kennedy BM, Troll VR, Deegan FM (2020) The thermal properties of porous andesite. J Volcanol Geoth Res 106901:398. https://doi.org/10.1016/j.jvolgeores.2020.106901

    Google Scholar 

  • Hedenquist J, Lowenstern J (1994) The role of magmas in the formation of hydrothermal ore-deposits. Nature 370(6490):519–527. https://doi.org/10.1038/370519a0

    Google Scholar 

  • Hincks TK, Komorowski JC, Sparks SR, Aspinall WP (2014) Retrospective analysis of uncertain eruption precursors at la Soufrière volcano, Guadeloupe, 1975–77: volcanic hazard assessment using a Bayesian Belief Network approach. J Appl Volcanol 3(1):1–26. https://doi.org/10.1186/2191-5040-3-3

    Google Scholar 

  • John DA, Sisson TW, Breit GN, Rye RO, Vallance JW (2008) Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: implications for debris-flow hazards and mineral deposits. J Volcanol Geoth Res 175(3):289–314. https://doi.org/10.1016/j.jvolgeores.2008.04.004

    Google Scholar 

  • Kochanov R, Gordon I, Rothman L, Wcisło P, Hill C, Wilzewski J (2016) HITRAN Application Programming Interface (HAPI): a comprehensive approach to working with spectroscopic data. J Quant Spectrosc & Radiat Transfer 177:15–30,. https://doi.org/10.1016/j.jqsrt.2016.03.005. xVIIIth Symposium on High Resolution Molecular Spectroscopy (HighRus-2015), Tomsk, Russia

    Google Scholar 

  • Komorowski J, Boudon G, Antenor-Habazac C, Hammouya G, Semet M, David J, Beauducel F, Cheminée J, Feuillard M (2001) L’activité éruptive et non-éruptive de la Soufrière de Guadeloupe: problèmes et implications de la phénoménologie et des signaux actuellement enregistrés (French). Eruptive and non-eruptive activity from La Soufrière of Guadeloupe: problems and implications posed by the current phenomenology and monitoring signals. Workshop on volcanic hazards - Lesser Antilles volcanoes: from processes to signals. In: INSU Lesser Antilles Volcanic Hazard Workshop, Paris, pp 18–19

  • Komorowski JC, Boudon G, Semet M, Beauducel F, Anténor-Habazac C, Bazin S, Hammouya G (2005) Guadeloupe. In: Lindsay J, Robertson R, Shepherd J, Ali S (eds) Volcanic hazard atlas of the lesser antilles, Seismic Research Unit, the University of the West Indies. Trinidad and Tobago, W.I., pp 65–102

  • Ku HH (1966) Notes on the use of propagation of error formulas. J Res Nat Bureau Stand 70 (4):263–273

    Google Scholar 

  • Lardy M, Tabbagh A (1999) Measuring and interpreting heat fluxes from shallow volcanic bodies using vertical temperature profiles: a preliminary test. Bull Volcanol 60(6):441–447. https://doi.org/10.1007/s004450050244

    Google Scholar 

  • Legendre Y (2012) Reconstruction fine de l’histoire éruptive et scenarii éruptifs à La Soufrière de guadeloupe : vers un modèle intégré de fonctionnement du volcan. PhD thesis, IPGP, 2012PA077065

  • Lesparre N, Gibert D, Marteau J, Komorowski JC, Nicollin F, Coutant O (2012) Density muon radiography of La Soufrière of Guadeloupe volcano: comparison with geological, electrical resistivity and gravity data. Geophys J Int 190(2):1008–1019. https://doi.org/10.1111/j.1365-246X.2012.05546.x

    Google Scholar 

  • López DL, Williams SN (1993) Catastrophic volcanic collapse: relation to hydrothermal processes. Science 260(5115):1794–1796. https://doi.org/10.1126/science.260.5115.1794

    Google Scholar 

  • Mannini S, Harris AJL, Jessop DE, Chevrel MO, Ramsey MS (2019) Combining ground- and ASTER-based thermal measurements to constrain fumarole field heat budgets: the case of Vulcano Fossa 2000-2019. Geophys Res Lett https://doi.org/10.1029/2019GL084013

  • Massey B, Ward-Smith J (1998) Mechanics of fluids, seventh edn, Stanley Thornes ltd., p 383

  • Matsushima N, Kazahaya K, Saito G, Shinohara H (2003) Mass and heat flux of volcanic gas discharging from the summit crater of Iwodake volcano, Satsuma-Iwojima, Japan, during 1996-1999. J Volcanol Geoth Res 126(3–4):285–301. https://doi.org/10.1016/S0377-0273(03)00152-5

    Google Scholar 

  • Mordensky SP, Heap MJ, Kennedy BM, Gilg HA, Villeneuve MC, Farquharson JI, Gravley DM (2019) Influence of alteration on the mechanical behaviour and failure mode of andesite: implications for shallow seismicity and volcano monitoring. Bull Volcanol 81(8):44. https://doi.org/10.1007/s00445-019-1306-9

    Google Scholar 

  • Moretti R, Stefansson A (2020) Volcanic and geothermal redox engines. Elements 16:179–184

    Google Scholar 

  • Moretti R, Komorowski JC, Ucciani G, Moune S, Jessop D, de Chabalier JB, Beauducel F, Bonifacie M, Burtin A, Vallée M, Deroussi S, Robert V, Gibert D, Didier T, Kitou T, Feuillet N, Allard P, Tamburello G, Shreve T, Saurel JM, Lemarchand A, Rosas-Carbajal M, Agrinier P, Friant AL, Chaussidon M (2020a) The 2018 unrest phase at La Soufrière of Guadeloupe (French West Indies) andesitic volcano: scrutiny of a failed but prodromal phreatic eruption. J Volcanol Geoth Res p 106769, https://doi.org/10.1016/j.jvolgeores.2020.106769

  • Moretti R, Moune S, Robert V, Jessop DE, Didier T, Bonifacie M, Kitou T, Komorowski JC (2020b) Intercomparison of geochemical techniques at La Soufrière de Guadeloupe (FWI) volcano: their advantages and their limits over a long-standing unrest. Ital J Geosci, https://doi.org/10.3301/IJG.2020.13

  • Moussallam Y, Tamburello G, Peters N, Apaza F, Schipper CI, Curtis A, Aiuppa A, Masias P, Boichu M, Bauduin S et al (2017) Volcanic gas emissions and degassing dynamics at Ubinas and Sabancaya volcanoes; implications for the volatile budget of the central volcanic zone. J Volcanol Geoth Res 343:181–191

    Google Scholar 

  • Neri A (1998) A local heat transfer analysis of lava cooling in the atmosphere: application to thermal diffusion-dominated lava flows. J Volcanol Geoth Res 81(3):215–243. https://doi.org/10.1016/S0377-0273(98)00010-9

    Google Scholar 

  • Pichavant M, Poussineau S, Lesne P, Solaro C, Bourdier JL (2018) Experimental parametrization of magma mixing: application to the AD 1530 eruption of La Soufrière, Guadeloupe (Lesser Antilles). J Petrol 59(2):257–282. https://doi.org/10.1093/petrology/egy030

    Google Scholar 

  • Pola A, Crosta G, Fusi N, Barberini V, Norini G (2012) Influence of alteration on physical properties of volcanic rocks. Tectonophysics 566-567:67–86. https://doi.org/10.1016/j.tecto.2012.07.017

    Google Scholar 

  • Pouget S, Bursik M, Johnson CG, Hogg AJ, Phillips JC, Sparks RSJ (2015) Interpretation of umbrella cloud growth and morphology: implications for flow regimes of short-lived and long-lived eruptions. Bull Volcanol 78(1):1. https://doi.org/10.1007/s00445-015-0993-0

    Google Scholar 

  • Reid ME (2004) Massive collapse of volcano edifices triggered by hydrothermal pressurization. Geol 32(5):373–376. https://doi.org/10.1130/G20300.1

    Google Scholar 

  • Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29(9):779–782. https://doi.org/10.1130/0091-7613(2001)029<0779:VCPBHA>2.0.CO;2

    Google Scholar 

  • Rosas-Carbajal M, Komorowski JC, Nicollin F, Gibert D (2016) Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics. Sci Rep 6(1). https://doi.org/10.1038/srep29899

  • Rupnik E, Daakir M, Pierrot Deseilligny M (2017) Micmac – a free, open-source solution for photogrammetry. Open Geospat Data Softw Stand 2(1):14. https://doi.org/10.1186/s40965-017-0027-2

    Google Scholar 

  • Ruzié L, Aubaud C, Moreira M, Agrinier P, Dessert C, Gréau C, Crispi O (2013) Carbon and helium isotopes in thermal springs of La Soufrière volcano (Guadeloupe, Lesser Antilles): implications for volcanological monitoring. Chem Geol 359:70–80. https://doi.org/10.1016/j.chemgeo.2013.09.008

    Google Scholar 

  • Salaün A, Villemant B, Gérard M, Komorowski JC, Michel A (2011) Hydrothermal alteration in andesitic volcanoes: trace element redistribution in active and ancient hydrothermal systems of Guadeloupe (Lesser Antilles). J Geochem Explor 111(3):59–83

    Google Scholar 

  • Sekioka M, Yuhara K (1974) Heat flux estimation in geothermal areas based on the heat balance of the ground surface. J Geophys Res-Solid Earth 79(14):2053–2058. https://doi.org/10.1029/JB079i014p02053

    Google Scholar 

  • Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds.) (2015) The Encyclopedia of Volcanoes. Elsevier Science. https://doi.org/10.1016/C2015-0-00175-7

  • Slawson PR, Csanady GT (1967) On mean path buoyant bent-over chimney plumes. J Fluid Mech 28(Part 2):311–&. https://doi.org/10.1017/S0022112067002095

    Google Scholar 

  • Stevenson DS (1993) Physical models of fumarolic flow. J Volcanol Geoth Res 57(3–4):139–156. https://doi.org/10.1016/0377-0273(93)90009-G

    Google Scholar 

  • Stimac J, Goff F, Goff CJ (2015) Intrusion-related geothermal systems. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The Encyclopedia of Volcanoes, second edition edn, Academic Press, Amsterdam, chap 46, pp 799–822. https://doi.org/10.1016/B978-0-12-385938-9.00046-8

  • Tamburello G (2015) Ratiocalc: software for processing data from multicomponent volcanic gas analyzers. Comp Geosci 82:63–67. https://doi.org/10.1016/j.cageo.2015.05.004

    Google Scholar 

  • Tamburello G, Moune S, Allard P, Venugopal S, Robert V, Rosas-Carbajal M, Deroussi S, Kitou GT, Didier T, Komorowski JC, Beauducel F, De Chabalier JB, Le Marchand A, Le Friant A, Bonifacie M, Dessert C, Moretti R (2019) Spatio-temporal relationships between fumarolic activity, hydrothermal fluid circulation and geophysical signals at an arc volcano in degassing unrest: la Soufrière of Guadeloupe (French West Indies). Geosci 9(11):480. https://doi.org/10.3390/geosciences9110480

    Article  Google Scholar 

  • Villemant B, Hammouya G, Michel A, Semet MP, Komorowski JC, Boudon G, Cheminee JL (2005) The memory of volcanic waters: shallow magma degassing revealed by halogen monitoring in thermal springs of La Soufriére volcano (Guadeloupe, Lesser Antilles). Earth Planet Sci Let 237(3–4):710–728. https://doi.org/10.1016/j.epsl.2005.05.013

    Google Scholar 

  • Villemant B, Komorowski J, Dessert C, Michel A, Crispi O, Hammouya G, Beauducel F, Chabalier JBD (2014) Evidence for a new shallow magma intrusion at La Soufrière of Guadeloupe (Lesser Antilles): insights from long-term geochemical monitoring of halogen-rich hydrothermal fluids. J Volcanol Geoth Res 285:247–277. https://doi.org/10.1016/j.jvolgeores.2014.08.002

    Google Scholar 

  • de Vries BvW, Kerle N, Petley D (2000) Sector collapse forming at Casita volcano, Nicaragua. Geology 28(2):167–170. https://doi.org/10.1130/0091-7613(2000)28<167:SCFACV>2.0.CO;2

    Google Scholar 

  • Wagner W, Pruß A (1987) International equations for the saturation properties of ordinary water substance. Revised according to the International Temperature Scale of 1990. Addendum to J. Phys. Chem. Ref. Data 16:893. J Phys Chem Ref Data 22(3)783–787 https://doi.org/10.1063/1.555926

    Google Scholar 

  • Wagner W, Pruß A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31(2):387–535. https://doi.org/10.1063/1.1461829

    Google Scholar 

  • Wyering L, Villeneuve M, Wallis I, Siratovich P, Kennedy B, Gravley D, Cant J (2014) Mechanical and physical properties of hydrothermally altered rocks, taupo volcanic zone, new zealand. J Volcanol Geoth Res 288:76–93. https://doi.org/10.1016/j.jvolgeores.2014.10.008

    Google Scholar 

  • Zlotnicki J, Boudon G, Mouël JLL (1992) The volcanic activity of la Soufrière of Guadeloupe (Lesser Antilles): structural and tectonic implications. J Volcanol Geoth Res 49(1):91–104. https://doi.org/10.1016/0377-0273(92)90006-Y

    Google Scholar 

Download references

Acknowledgements

The authors thank the Assistant Editor, M. R. James and two anonymous authors for their constructive comments and suggestions; the OVSG-IPGP team for logistical support and help with data collection, Pierre Agrinier, and especially Gilbert Hammouya and Olivier Crispi for data collection before 2013; Pascal Allemand and IGN for DEMs and orthophotos; the Préfecture de Guadeloupe and the pilots of the Dragon 971 helicopter base in Guadeloupe (Sécurité Civile, Ministère de l’Intérieur) for providing helicopter support; the Parc National de Guadeloupe for assistance and authorisation of research and monitoring on La Soufrière.

Funding

IPGP, INSU-CNRS through the Service National d’Observation en Volcanologie (SNOV) and the Ministère pour la Transition Écologique et Solidaire (MTES) for financial support. This work has been supported by the ANR DOMOSCAN, ANR DIAPHANE, the AO-IPGP 2018 project “Depth to surface propagation of fluid-related anomalies at La Soufrière de Guadeloupe volcano (FWI): timing and implications for volcanic unrest” (coord.: R. Moretti) and the European Union’s through EUROVOLC (project No 731070). This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001, is IPGP contribution number 4164 and is LabEx ClerVolc contribution number 426. MJH acknowledges funding via the INSU-CNRS project “Assessing the role of hydrothermal alteration on volcanic hazards”.

Author information

Authors and Affiliations

Authors

Contributions

DEJ collected and analysed the field data, prepared the figures and wrote the manuscript. SM, RM, DG, JCK and VR also collected and analysed field data. All authors contributed in the writing and discussion of the manuscript, and consented to its submission.

Corresponding author

Correspondence to David E. Jessop.

Additional information

Editorial responsibility: M.R. James; Deputy Executive Editor: J. Tadeucci

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 3.13 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jessop, D.E., Moune, S., Moretti, R. et al. A multi-decadal view of the heat and mass budget of a volcano in unrest: La Soufrière de Guadeloupe (French West Indies). Bull Volcanol 83, 16 (2021). https://doi.org/10.1007/s00445-021-01439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-021-01439-2

Keywords

Navigation