Skip to main content

Evidence for primitive magma storage and eruption following prolonged equilibration in thickened crust

Abstract

In continental arcs, the exposure of primitive eruptive products at the surface is typically a result of rapid magmatic transfer through the crust. As a result, the initially primitive magma experiences minimal crustal residence and thus insignificant differentiation towards more evolved products. This rapid transfer of primitive magma through thickened crust is commonly recorded from smaller, monogenetic cinder cones. Manantial Pelado (35.5° S) is a long-lived stratocone in the Southern Andean Volcanic Zone (SVZ) overlying thick continental crust (45–50 km) that produces almost exclusively mafic material. As Manantial Pelado is surrounded by extensive silicic volcanism, the study of its mafic exposure as a stratocone can be used to further understand magmatic origins of long-lived volcanic systems. Our study uses textural, geochemical, and geochronological data from lavas collected from Manantial Pelado to characterize its magmatic petrogenesis, assess the primitive nature, and explain processes in the crust within the SVZ. A geologic description of the volcano reveals a mostly monotonous eruptive history of basaltic andesites that are now accessible through glacially carved valleys. New 40Ar/39Ar dating constrains most of the volcano’s cone constructing phase to last from ~ 220 to 190 ka. At ~ 30 ka, small-volume activity and different petrography of more intermediate magmas were present reflecting a change in the volcano’s character. A combination of the whole-rock and mineral-scale data reveals that basaltic andesites at Manantial Pelado are among the most primitive magmas in the thickened crust of the SVZ. Evidence for this primitive signature consists of textural and zonation patterns in olivine, the presence of Cr-spinel in olivine cores, and elevated Fo and Ni content within olivine cores. This data combined with elemental diffusion modeling provides evidence for a primitive signature for these lavas. Intermediate Fo olivines with uniform core compositions (Fo80–84) suggest that basaltic andesites reside in the crust in quasi-closed system environments for extended storage prior to eruption (~ 25–6000 years). Diffusive equilibration in those intermediate Fo olivines masks the primitive nature of the magmas. These results suggest that mafic magmas can have a protracted storage history in the crust that does not significantly alter their primitive bulk composition before reaching the surface. We argue that these are important processes in understanding the magmatic origin of long-lived systems and the presence of compositionally homogenous olivines at intermediate Fo content may represent cryptic evidence for recharge with primitive magmas that experienced prolonged crustal storage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • Andersen NL, Singer BS, Jicha BR, Beard BL, Johnson CM, Licciardi JM (2017) Pleistocene to Holocene growth of a large upper crustal rhyolitic magma reservoir beneath the active Laguna del Maule volcanic field, Central Chile. J Petrol 58:85–114

    Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Google Scholar 

  • Bachmann O, Bergantz GW (2003) Rejuvenation of the Fish Canyon magma body: a window into the evolution of large-volume silicic magma systems. Geology 31:789–792

    Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582

    Google Scholar 

  • Baggerman TD, DeBari SM (2011) The generation of a diverse suite of Late Pleistocene and Holocene basalt through dacite lavas from the northern Cascade arc at Mount Baker, Washington. Contrib Mineral Petrol 161(1):75–99

    Google Scholar 

  • Beattie P, Ford C, Russell D (1991) Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib Mineral Petrol 109(2):212–224

    Google Scholar 

  • Bouvet De Maisonneuve C, Dungan MA, Bachmann O, Burgisser A (2012) Insights into shallow magma storage and crystallization at Volcán Llaima (Andean southern volcanic zone, Chile). J Volcanol Geotherm Res 211:76–91

    Google Scholar 

  • Burns DH, de Silva SL, Tepley FJ, Schmitt AK (2019) Chasing the mantle: deciphering cryptic mantle signals through Earth's thickest continental magmatic arc. Earth Planet Sci Lett 531:115985

    Google Scholar 

  • Calvert AT, Lanphere MA (2006) Argon geochronology of Kilauea’s early submarine history. J Volcanol Geotherm Res 151:1–18. https://doi.org/10.1016/j.jvolgeores.2005.07.023

    Article  Google Scholar 

  • Cashman KV, Sparks RSJ, Blundy JD (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355(6331):eaag3055

    Google Scholar 

  • Cembrano J, Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471(1–2):96–113

    Google Scholar 

  • Clynne MA, Borg LE (1997) Olivine and chromian spinel in primitive calc-alkaline and tholeiitic lavas from the southernmost Cascade Range, California; a reflection of relative fertility of the source. Can Mineral 35(2):453–472

    Google Scholar 

  • Conrad WK, Kay RW (1984) Ultramafic and mafic inclusions from Adak Island: crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian Arc. J Petrol 25(1):88–125

    Google Scholar 

  • Conrey RM, Hooper PR, Larson PB, Chesley J, Ruiz J (2001) Trace element and isotopic evidence for two types of crustal melting beneath a High Cascade volcanic center, Mt. Jefferson, Oregon. Contrib Mineral Petrol 141(6):710–732

    Google Scholar 

  • Costa F, Dungan MA (2005) Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33:837–840

    Google Scholar 

  • Costantini L, Pioli L, Bonadonna C, Clavero J, Longchamp C (2011) A late Holocene explosive mafic eruption of Villarrica volcano, Southern Andes: the Chaimilla deposit. J Volcanol Geotherm Res 200(3–4):143–158. https://doi.org/10.1016/j.jvolgeores.2011.09.010

    Article  Google Scholar 

  • Dalrymple GB, Alexander EC, Lanphere MA, Kraker GP (1981) Irradiation of samples for 40Ar/39Ar dating using the Geological Survey TRIGA reactor. U S Geol Surv Prof Pap 1176:55. https://doi.org/10.3133/pp1176

    Article  Google Scholar 

  • Deruelle B (1982) Petrology of the Plio-Quaternary volcanism of the south-central and meridional Andes. J Volcanol Geotherm Res 14(1–2):77–124. https://doi.org/10.1016/0377-0273(82)90044-0

    Article  Google Scholar 

  • Dohmen R, Chakraborty S (2007) Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys Chem Miner 34:409–430

    Google Scholar 

  • Drake MJ, Weill DF (1975) Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochim Cosmochim Acta 39(5):689–712

    Google Scholar 

  • Dufek J, Bachmann O (2010) Quantum magmatism: magmatic compositional gaps generated by melt-crystal dynamics. Geology 38:687–690

    Google Scholar 

  • Dufek J, Bergantz GW (2005) Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt–crust interaction. J Petrol 46:2167–2195

    Google Scholar 

  • Dungan MA, Wulff A, Thompson REN (2001) Eruptive stratigraphy of the Tatara–San Pedro complex, 36 S, Southern Volcanic Zone, Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers. J Petrol 42:555–626

    Google Scholar 

  • Fleck R, Sutter J, Elliot D (1977) Interpretation of discordant 40Ar/39Ar agespectra of Mesozoic tholeiites from Antarctica. Geochim Cosmochim Acta 41:15–32

    Google Scholar 

  • Fleck RJ, Hagstrum JT, Calvert AT (2014) 40Ar/39Ar geochronology, paleomagnetism, and evolution of the Boring volcanic field, Oregon and Washington, USA. Geosphere 10:1283–1314. https://doi.org/10.1130/GES00985.1

    Article  Google Scholar 

  • Fleck RJ, Calvert AT, Coble MA (2019) Characterization of the rhyolite of Bodie Hills and 40Ar/39Ar intercalibration with Ar mineral standards. Chem Geol 525:282–302. https://doi.org/10.1016/j.chemgeo.2019.07.022

    Article  Google Scholar 

  • Fontijn K, Lachowycz SM, Rawson H, Pyle DM, Mather TA, Naranjo JA, Moreno-Roa H (2014) Late Quaternary tephrostratigraphy of southern Chile and Argentina. Quat Sci Rev 89:70–84

    Google Scholar 

  • Gavrilenko M, Ozerov A, Kyle PR, Carr MJ, Nikulin A, Vidito C, Danyushevsky L (2016) Abrupt transition from fractional crystallization to magma mixing at Gorely volcano (Kamchatka) after caldera collapse. Bull Volcanol 78(7):47

    Google Scholar 

  • Gerlach DC, Frey FA, Moreno-Roa H, Lopez-Escobar L (1988) Recent volcanism in the Puyehue—Cordon Caulle region, Southern Andes, Chile (40· 5° S): petrogenesis of evolved lavas. J Petrol 29(2):333–382. https://doi.org/10.1093/petrology/29.2.333

    Article  Google Scholar 

  • Grove TL, Baker MB, Kinzler RJ (1984) Coupled CaAl-NaSi diffusion in plagioclase feldspar: experiments and applications to cooling rate speedometry. Geochim Cosmochim Acta 48:2113–2121

    Google Scholar 

  • Grunder AL (1987) Low δ18O silicic volcanic rocks at the Calabozos caldera complex, southern Andes. Contrib Mineral Petrol 95:71–81

    Google Scholar 

  • Hawkesworth CJ, Hammill M, Gledhill AR, van Calsteren P, Rogers G (1982) Isotope and trace element evidence for late-stage intra-crustal melting in the High Andes. Earth Planet Sci Lett 58(2):240–254

    Google Scholar 

  • Hickey-Vargas R, Frey FA, Gerlach DC, López-Escobar L (1986) Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34-41 S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle and continental crust. J Geophys Res-Solid Earth 91(6):5963–5983. https://doi.org/10.1029/JB091iB06p05963

    Article  Google Scholar 

  • Hickey-Vargas R, Moreno-Roa H, López-Escobar L, Frey FA (1989) Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanin volcanic chain (39.5 S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contrib Mineral Petrol 103(3):361–386. https://doi.org/10.1007/BF00402922

    Article  Google Scholar 

  • Hickey-Vargas R, Sun M, López-Escobar L, Moreno-Roa H, Reagan MK, Morris JD, Ryan JG (2002) Multiple subduction components in the mantle wedge: evidence from eruptive centers in the Central Southern volcanic zone, Chile. Geology 30(3):199–202. https://doi.org/10.1130/0091-7613(2002)030<0199:MSCITM>2.0.CO;2

    Article  Google Scholar 

  • Hickey-Vargas R, Holbik S, Tormey D, Frey FA, Roa HM (2016) Basaltic rocks from the Andean Southern Volcanic Zone: insights from the comparison of along-strike and small-scale geochemical variations and their sources. Lithos 258:115–132. https://doi.org/10.1016/j.lithos.2016.04.014

    Article  Google Scholar 

  • Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Volcanol Geotherm Res 136:169–198

    Google Scholar 

  • Hildreth W, Drake RE (1992) Volcán Quizapú, Chilean Andes. Bull Volcanol 54:93–125

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Google Scholar 

  • Hildreth W, Godoy E, Fierstein J, Singer B (2010) Laguna del Maule Volcanic field: eruptive history of a Quaternary basalt-to-rhyolite distributed volcanic field on the Andean range crest in central Chile. Servicio Nacional de Geología y Minería-Chile Boletin 63:142

    Google Scholar 

  • Hildreth W, Grunder AL, Drake RE (1984) The Loma Seca Tuff and the Calabozos caldera: a major ash-flow and caldera complex in the southern Andes of central Chile. Geol Soc Am Bull 95:45–54

    Google Scholar 

  • Holm PM, Søager N, Dyhr CT, Nielsen MR (2014) Enrichments of the mantle sources beneath the Southern Volcanic Zone (Andes) by fluids and melts derived from abraded upper continental crust. Contrib MineralPetrol 167(5):1004. https://doi.org/10.1007/s00410-014-1004-8

    Article  Google Scholar 

  • Huber C, Bachmann O, Manga M (2009) Homogenization processes in silicic magma chambers by stirring and mushification (latent heat buffering). Earth Planet Sci Lett 283(1–4):38–47

    Google Scholar 

  • Jacques G, Hoernle K, Gill J, Hauff F, Wehrmann H, Garbe-Schönberg D, van den Bogaard P, Bindeman I, Lara LE (2013) Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0 S): constraints on mantle wedge and slab input compositions. Geochim Cosmochim Acta 123:218–243

    Google Scholar 

  • Jacques G, Hoernle K, Gill J, Wehrmann H, Bindeman I, Lara LE (2014) Geochemical variations in the Central Southern Volcanic Zone, Chile (38–43 S): the role of fluids in generating arc magmas. Chem Geol 371:27–45

    Google Scholar 

  • James DE (1982) A combined O, Sr, Nd, and Pb isotopic and trace element study of crustal contamination in central Andean lavas, I. Local geochemical variations. Earth Planet Sci Lett 57(1):47–62

    Google Scholar 

  • Jenner FE, O'Neill HSC (2012) Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem Geophys Geosyst 13(2)

  • Jicha BR, Singer BS, Beard BL, Johnson CM, Moreno-Roa H, Naranjo JA (2007) Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue–Cordón Caulle, Southern Volcanic Zone, Chile. Earth Planet Sci Lett 255(1–2):229–242. https://doi.org/10.1016/j.epsl.2006.12.017

    Article  Google Scholar 

  • Johnson D, Hooper P, Conrey R (1999) XRF method XRF analysis of rocks and minerals for major and trace elements on a single low dilution Li-tetraborate fused bead. Adv X-ray Anal 41:843–867

    Google Scholar 

  • Jweda J (2014) Geochemistry of the Tatara-San Pedro continental arc volcanic complex and implications for magmatism in the Chilean Southern Volcanic Zone. Ph.D. Dissertation Columbia University 316pp

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42:655–671

    Google Scholar 

  • Kelemen PB, Whitehead JA, Aharonov E, Jordahl KA (1995) Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. J Geophys Res-Solid Earth 100:475–496

    Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin P, Bateman P, Bellini G, Dudek A, Efremova S, Keller J, Lameyre J (2002) Igneous rocks: a classification of and glossary of terms. Recommendations of the International Union of Geological Sciences (IUGS), Subcommission on the Systematics of Igneous Rocks

  • Lee JY, Marti K, Severinghaus JP (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta 70:4507–4512. https://doi.org/10.1016/j.gca.2006.06.1563

    Article  Google Scholar 

  • Lopez-Escobar L, Frey FA, Vergara M (1977) Andesites and high-alumina basalts from the central-south Chile High Andes: geochemical evidence bearing on their petrogenesis. Contrib Mineral Petrol 63(3):199–228. https://doi.org/10.1007/BF00375573

    Article  Google Scholar 

  • Lopez-Escobar L, Vergara M, Frey FA (1981) Petrology and geochemistry of lavas from Antuco volcano, a basaltic volcano of the Southern Andes (37° 25′ S). J Volcanol Geotherm Res 11(2–4):329–352. https://doi.org/10.1016/0377-0273(81)90030-5

    Article  Google Scholar 

  • Lopez-Escobar L, Parada MA, Moreno H, Frey FA, Hickey-Vargas RL (1992) A contribution to the petrogenesis of Osomo and Calbuco volcanoes, Southern Andes (41° 00′-41° 30'S): comparative study. Andean Geol 19(2):211–226

    Google Scholar 

  • López-Escobar L, Cembrano J, Moreno H (1995) Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37-46S). Andean Geol 22:219–234. https://doi.org/10.5027/andgeoV22n2-a06

    Article  Google Scholar 

  • Marsh BD (1988) Crystal capture, sorting, and retention in convecting magma. Geol Soc Am Bull 100:1720–1737

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120(3–4):223–253

    Google Scholar 

  • Morgado E, Parada MA, Contreras C, Castruccio A, Gutiérrez F, McGee LE (2015) Contrasting records from mantle to surface of Holocene lavas of two nearby arc volcanic complexes: Caburgua-Huelemolle Small Eruptive Centers and Villarrica Volcano, Southern Chile. J Volcanol Geotherm Res 306:1–16. https://doi.org/10.1016/j.jvolgeores.2015.09.023

    Article  Google Scholar 

  • Oeser M, Ruprecht P, Weyer S (2018) Combined Fe-Mg chemical and isotopic zoning in olivine constraining magma mixing-to-eruption timescales for the continental arc volcano Irazú (Costa Rica) and Cr diffusion in olivine. Am Mineral 103:582–599

    Google Scholar 

  • Pioli L, Scalisi L, Costantini L, Di Muro A, Bonadonna C, Clavero J (2015) Explosive style, magma degassing and evolution in the Chaimilla eruption, Villarrica volcano, Southern Andes. Bull Volcanol 77(11):93

    Google Scholar 

  • Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46(5):921–944

    Google Scholar 

  • Plank T (2014) The chemical composition of subducting sediments. Elsevier

  • Rabassa J, Clapperton CM (1990) Quaternary glaciations of the southern Andes. Quat Sci Rev 9:153–174

    Google Scholar 

  • Ramos VA, Cegarra M, Cristallini E (1996) Cenozoic tectonics of the High Andes of west-central Argentina (30–36 S latitude). Tectonophysics 259:185–200

    Google Scholar 

  • Rawson H, Naranjo JA, Smith VC, Fontijn K, Pyle DM, Mather TA, Moreno H (2015) The frequency and magnitude of post-glacial explosive eruptions at Volcán Mocho-Choshuenco, southern Chile. J Volcanol Geotherm Res 299:103–129. https://doi.org/10.1016/j.jvolgeores.2015.04.003

    Article  Google Scholar 

  • Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152

    Google Scholar 

  • Rodríguez C, Sellés D, Dungan M, Langmuir C, Leeman W (2007) Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví volcano (36.2S; Andean Southern Volcanic Zone, Central Chile). J Petrol 48:2033–2061

    Google Scholar 

  • Roeder PL, Emslie R (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Google Scholar 

  • Ruprecht P, Bachmann O (2010) Pre-eruptive reheating during magma mixing at Quizapú volcano and the implications for the explosiveness of silicic arc volcanoes. Geology 38:919–922

    Google Scholar 

  • Ruprecht P, Plank T (2013) Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500:68–72

    Google Scholar 

  • Ruprecht P, Wörner G (2007) Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. J Volcanol Geotherm Res 165:142–162. https://doi.org/10.1016/j.jvolgeores.2007.06.002

    Article  Google Scholar 

  • Ruprecht P, Bergantz GW, Cooper KM, Hildreth W (2012) The crustal magma storage system of Volcán Quizapú, Chile, and the effects of magma mixing on magma diversity. J Petrol 53:801–840

    Google Scholar 

  • Ruth DC, Cottrell E, Cortés JA, Kelley KA, Calder ES (2016) From passive degassing to violent Strombolian eruption: the case of the 2008 eruption of Llaima volcano, Chile. J Petrol 57(9):1833–1864. https://doi.org/10.1093/petrology/egw063

    Article  Google Scholar 

  • Salas PA, Rabbia OM, Hernández LB, Ruprecht P (2017) Mafic monogenetic vents at the Descabezado Grande volcanic field (35.5°S–70.8°W): the northernmost evidence of regional primitive volcanism in the Southern Volcanic Zone of Chile. Int J Earth Sci 106:1107–1121

    Google Scholar 

  • Sato H (1977) Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 10:113–120

    Google Scholar 

  • Schleicher JM, Bergantz GW (2017) The mechanics and temporal evolution of an open-system magmatic intrusion into a crystal-rich magma. J Petrol 58:1059–1072. https://doi.org/10.1093/petrology/egx045

    Article  Google Scholar 

  • Schmidt MW, Jagoutz O (2017) The global systematics of primitive arc melts. Geochem Geophys Geosyst 18:2817–2854

    Google Scholar 

  • Sellés D, Rodríguez A, Dungan MA, Naranjo JA, Gardeweg M (2004) Geochemistry of Nevado de Longaví Volcano (36.2 S): a compositionally atypical arc volcano in the Southern Volcanic Zone of the Andes. Rev Geol Chile 31(2):293–315

    Google Scholar 

  • Singer BS, Jicha BR, Harper MA, Naranjo JA, Lara LE, Moreno-Roa H (2008) Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordón Caulle volcanic complex, Chile. Geol Soc Am Bull 120(5–6):599–618. https://doi.org/10.1130/B26276.1

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362. https://doi.org/10.1016/0012-821X(77)90060-7

    Article  Google Scholar 

  • Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 3:161–206

    Google Scholar 

  • Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib Mineral Petrol 123:263–281

    Google Scholar 

  • Straub SM, Gomez-Tuena A, Stuart FM, Zellmer GF, Espinasa-Perena R, Cai Y, Iizuka Y (2011) Formation of hybrid arc andesites beneath thick continental crust. Earth Planet Sci Lett 303:337–347

    Google Scholar 

  • Tassara A, Echaurren A (2012) Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophys J Int 189:161–168

    Google Scholar 

  • Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149(1):22–39

    Google Scholar 

  • Tormey DR, Hickey-Vargas R, Frey FA, López-Escobar L (1991) Recent lavas from the Andean volcanic front (33 to 42 S); interpretations of along-arc compositional variations. Geol Soc Am Spec Pap 265:57–77. https://doi.org/10.1130/SPE265-p57

    Article  Google Scholar 

  • Tormey DR, Frey FA, Lopez-Escobar L (1995) Geochemistry of the active Azufre-Planchon-Peteroa volcanic complex, Chile (35 15′ S): evidence for multiple sources and processes in a cordilleran arc magmatic system. J Petrol 36(2):265–298. https://doi.org/10.1093/petrology/36.2.265

    Article  Google Scholar 

  • Turner SJ, Langmuir CH, Katz RF, Dungan MA, Escrig S (2016) Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure. Nat Geosci 9:772–776

    Google Scholar 

  • Turner SJ, Langmuir CH, Dungan MA, Escrig S (2017) The importance of mantle wedge heterogeneity to subduction zone magmatism and the origin of EM1. Earth Planet Sci Lett 472:216–228

    Google Scholar 

  • Walker BA, Bergantz GW, Otamendi JE, Ducea MN, Cristofolini EA (2015) A MASH zone revealed: the mafic complex of the Sierra Valle Fértil. J Petrol 56:1863–1896. https://doi.org/10.1093/petrology/egv057

    Article  Google Scholar 

  • Wallace PJ, Carmichael IS (1999) Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contrib Mineral Petrol 135:291–314

    Google Scholar 

  • Wehrmann H, Hoernle K, Garbe-Schönberg D, Jacques G, Mahlke J, Schumann K (2014a) Insights from trace element geochemistry as to the roles of subduction zone geometry and subduction input on the chemistry of arc magmas. Int J Earth Sci 103:1929–1944

    Google Scholar 

  • Wehrmann H, Hoernle K, Jacques G, Garbe-Schönberg D, Schumann K, Mahlke J, Lara LE (2014b) Volatile (sulphur and chlorine), major, and trace element geochemistry of mafic to intermediate tephras from the Chilean Southern Volcanic Zone (33–43 S). Int J Earth Sci 103(7):1945–1962. https://doi.org/10.1007/S00531-014-1006-9

    Article  Google Scholar 

Download references

Acknowledgments

Field work was greatly assisted by Pablo Salas and Paulina Henry. Thanks go to Paul Carpenter (WUSTL) and Frank Tepley (OSU) for electron microprobe assistance and advice. We greatly appreciate the discussions and support provided by Max Gavrilenko and Ellyn Huggins. We thank Nicole Métrich and Andrew Harris for the excellent editorial handling as well as two anonymous reviewers. Additionally, we would like to thank USGS internal reviewers Dawn Ruth and Michael Clynne for their constructive comments and reviews of this paper.

Funding

This study was funded by the US National Science Foundation (EAR-1719687 and 1717288 to PR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Winslow.

Ethics declarations

Disclaimer

Any use of trade, firm, or product names is for descriptive purposes only, and does not imply endorsement by the United States government.

Additional information

Editorial responsibility: N. Métrich

Electronic supplementary material

ESM 1

(PDF 21 kb)

ESM 2

(XLSX 110 kb)

ESM 3

(PDF 1172 kb)

ESM 4

(XLSX 11786 kb)

ESM 5

(XLSX 22094 kb)

ESM 6

(XLSX 20471 kb)

ESM 7

(XLSX 9249 kb)

ESM 8

(XLSX 24063 kb)

ESM 9

(PDF 639 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Winslow, H., Ruprecht, P., Stelten, M. et al. Evidence for primitive magma storage and eruption following prolonged equilibration in thickened crust. Bull Volcanol 82, 69 (2020). https://doi.org/10.1007/s00445-020-01406-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-01406-3

Keywords

  • Southern Andes
  • Mafic mush storage
  • Diffusive equilibration
  • Flat olivine cores
  • Manantial Pelado