Skip to main content

A framework for validation and benchmarking of pyroclastic current models

Abstract

Numerical models of pyroclastic currents are widely used for fundamental research and for hazard and risk modeling that supports decision-making and crisis management. Because of their potential high impact, the credibility and adequacy of models and simulations needs to be assessed by means of an established, consensual validation process. To define a general validation framework for pyroclastic current models, we propose to follow a similar terminology and the same methodology that was put forward by Oberkampf and Trucano (Prog Aerosp Sci, 38, 2002) for the validation of computational fluid dynamics (CFD) codes designed to simulate complex engineering systems. In this framework, the term validation is distinguished from verification (i.e., the assessment of numerical solution quality), and it is used to indicate a continuous process, in which the credibility of a model with respect to its intended use(s) is progressively improved by comparisons with a suite of ad hoc experiments. The methodology is based on a hierarchical process of comparing computational solutions with experimental datasets at different levels of complexity, from unit problems (well-known, simple CFD problems), through benchmark cases (complex setups having well constrained initial and boundary conditions) and subsystems (decoupled processes at the full scale), up to the fully coupled natural system. Among validation tests, we also further distinguish between confirmation (comparison of model results with a single, well-constrained dataset) and benchmarking (inter-comparison among different models of complex experimental cases). The latter is of particular interest in volcanology, where different modeling approaches and approximations can be adopted to deal with the large epistemic uncertainty of the natural system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Andrews BJ, Manga M (2011) Effects of topography on pyroclastic density current runout and formation of coignimbrites. Geology 39:1099–1102. https://doi.org/10.1130/G32226.1

    Article  Google Scholar 

  • Andrews BJ, Manga M (2012) Experimental study of turbulence, sedimentation, and coignimbrite mass partitioning in dilute pyroclastic density currents. J Volcanol Geotherm Res 225-226:30–44. https://doi.org/10.1016/j.jvolgeores.2012.02.01

    Article  Google Scholar 

  • Andrews MJ, O’Rourke PJ (1996) The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. Int J Multiphase Flow 22:379–402. https://doi.org/10.1016/0301-9322(95)00072-0

    Article  Google Scholar 

  • Armanini A (2013) Granular flows driven by gravity. J Hydraul Res 51(2):111–120. https://doi.org/10.1080/00221686.2013.788080

    Article  Google Scholar 

  • Balachandar S (2009) A scaling analysis for point–particle approaches to turbulent multiphase flows. Int J Multiphase Flow 35:801–810. https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.013

    Article  Google Scholar 

  • Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Annu Rev Fluid Mech 42:111–133

    Google Scholar 

  • Benage MC, Dufek J, Mothes PA (2016) Quantifying entrainment in pyroclastic density currents from the Tungurahua eruption, Ecuador: integrating field proxies with numerical simulations. Geophys Res Lett. https://doi.org/10.1002/(ISSN)1944-8007

  • Benjamin TB (1968) Gravity currents and related phenomena. J Fluid Mech 31:209–248

    Google Scholar 

  • Benqué JP, Haugel A, Viollet PL (1982) Numerical models in environmental fluid mechanics. In: Abbott MB, Cung JA (eds) Eng Appl Comput Hydraulics vol II

    Google Scholar 

  • Benyahia S (2008) Verification and validation study of some polydisperse kinetic theories. Chem Eng Sci 63:5672–5680. https://doi.org/10.1016/j.ces.2008.08.016

    Article  Google Scholar 

  • Bernard J, Kelfoun K, Le Pennec JL, Vallejo Vargas S (2014) Pyroclastic flow erosion and bulking processes: comparing field-based vs. modeling results at Tungurahua volcano, Ecuador. Bull Volcanol 76:858–816. https://doi.org/10.1007/s00445-014-0858-y

    Article  Google Scholar 

  • Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London

  • Breard ECP, Lube G (2017) Inside pyroclastic density currents – uncovering the enigmatic flow structure and transport behaviour in large-scale experiments. Earth Planet Sci Lett 458:22–36. https://doi.org/10.1016/j.epsl.2016.10.016

    Article  Google Scholar 

  • Breard ECP, Lube G, Jones JR, Dufek J, Cronin SJ, Valentine GA, Moebis A (2016) Coupling of turbulent and non-turbulent flow regimes within pyroclastic density currents. Nat Geosci 9:767–771. https://doi.org/10.1038/ngeo2794

    Article  Google Scholar 

  • Breard ECP, Dufek J, Lube G (2018) Enhanced mobility in concentrated pyroclastic density currents: an examination of a self-fluidization mechanism. Geophys Res Lett 45(2):654–664. https://doi.org/10.1002/2017GL075759

    Article  Google Scholar 

  • Breard ECP, Dufek J, Roche O (2019a) Continuum modelling of pressure-balanced and fluidized granular flows in 2D: comparison with glass bead experiments and implications for concentrated pyroclastic currents. J Geophys Res 124(6):5557–5583. https://doi.org/10.1029/2018JB016874

    Article  Google Scholar 

  • Breard ECP, Jones JR, Fullard L, Lube G, Davies C, Dufek J (2019b) The permeability of volcanic mixtures - implications for pyroclastic currents. J Geophys Res Solid Earth 124:1343–1360. https://doi.org/10.1029/2018JB016544

    Article  Google Scholar 

  • Burgisser A, Bergantz GW (2002) Reconciling pyroclastic flow and surge: the multiphase physics of pyroclastic density currents. Earth Planet Sci Lett 202:405–418

    Google Scholar 

  • Bursik MI, Woods AW (1996) The dynamics and thermodynamics of large ash flows. Bull Volcanol 58:175–193

    Google Scholar 

  • Bursik MI, Woods AW (2000) The effects of topography on sedimentation from particle-laden turbulent density currents. J Sediment Res 70:53–63. https://doi.org/10.1306/2dc408fe-0e47-11d7-8643000102c1865d

    Article  Google Scholar 

  • Calder ES, Cole PD, Dade WB, Druitt TH, Hoblitt RP, Huppert HE, Ritchie L, Sparks RSJ, Young SR (1999) Mobility of pyroclastic flows and surges at the Soufrière Hills Volcano, Montserrat. Geophys Res Lett 26:537–540. https://doi.org/10.1029/1999GL900051

    Article  Google Scholar 

  • Campbell CS (1990) Rapid granular flows. Annu Rev Fluid Mech 22:57–90

    Google Scholar 

  • Cao Z, Patra A, Bursik M, Pitman EB, Jones M (2018) Plume-SPH 1.0: a three-dimensional, dusty-gas volcanic plume model based on smoothed particle hydrodynamics. Geosci Model Dev 11:2691–2715. https://doi.org/10.5194/gmd-11-2691-2018

    Article  Google Scholar 

  • Carcano S, Bonaventura L, Esposti Ongaro T, Neri A (2013) A semi-implicit, second-order-accurate numerical model for multiphase underexpanded volcanic jets. Geosci Model Dev 6:1905–1924

    Google Scholar 

  • Carcano S, Esposti Ongaro T, Bonaventura L, Neri A (2014) Influence of grain-size distribution on the dynamics of underexpanded volcanic jets. J Volcanol Geotherm Res 285:60–80

    Google Scholar 

  • Cerminara M, Esposti Ongaro T, Berselli LC (2016a) ASHEE-1.0: a compressible, equilibrium–Eulerian model for volcanic ash plumes. Geosci Model Dev 9:697–730. https://doi.org/10.5194/gmd-9-697-2016

    Article  Google Scholar 

  • Cerminara M, Esposti Ongaro T, Neri A (2016b) Large eddy simulation of gas–particle kinematic decoupling and turbulent entrainment in volcanic plumes. J Volcanol Geotherm Res 326:143–171

    Google Scholar 

  • Charbonnier SJ, Gertisser R (2012) Evaluation of geophysical mass flow models using the 2006 block-and-ash flows of Merapi volcano, Java, Indonesia: towards a short-term hazard assessment tool. J Volcanol Geotherm Res 231:87–108

    Google Scholar 

  • Charbonnier SJ, Macorps E, Connor CB, Connor LJ, Richardson JA (2018) How to correctly evaluate the performance of volcanic mass flow models used for hazard assessment? Hazard and risk mapping – the Arequipa–El Misti case and other threatened cities, Presses Universitaires Blaise Pascal, Territoires, Hors Série n° 1, 15-20

  • Chédeville C, Roche O (2015) Influence of slope angle on pore pressure generation and kinematics of pyroclastic flows: insights from laboratory experiments. Bull Volcanol 77:96–13. https://doi.org/10.1007/s00445-015-0981-4

    Article  Google Scholar 

  • Chedeville C, Roche O (2018) Autofluidization of collapsing bed of fine particles: implications for the emplacement of pyroclastic flows. J Volcanol Geotherm Res 368:91–99. https://doi.org/10.1016/j.jvolgeores.2018.11.007

    Article  Google Scholar 

  • Clarke AB, Neri A, Voight B, Macedonio G, Druitt TH (2002) Computational modelling of the transient dynamics of the August 1997 Vulcanian explosions at Soufriere Hills Volcano, Montserrat: influence of initial conduit conditions on near-vent pyroclastic dispersal. Geol Soc Lond Mem 21:319–348

    Google Scholar 

  • Costa A, Suzuki YJ, Cerminara M, Devenish BJ, Ongaro TE, Herzog M, van Eaton AR, Denby LC, Bursik M, de' Michieli Vitturi M, Engwell S, Neri A, Barsotti S, Folch A, Macedonio G, Girault F, Carazzo G, Tait S, Kaminski E, Mastin LG, Woodhouse MJ, Phillips JC, Hogg AJ, Degruyter W, Bonadonna C (2016) Results of the eruptive column model inter-comparison study. J Volcanol Geotherm Res 326:2–25

    Google Scholar 

  • Dade WB (2003) The emplacement of low-aspect ratio ignimbrites by turbulent parent flows. J Geophys Res 108(B4):2211. https://doi.org/10.1029/2001JB001010

    Article  Google Scholar 

  • Dade WB, Huppert HE (1996) Emplacement of the Taupo ignimbrite by a dilute turbulent flow. Nature 381:509–512

    Google Scholar 

  • Dartevelle S (2007) From model conception to verification and validation, a global approach to multiphase Navier-Stoke models with an emphasis on volcanic explosive phenomenology (No. LA-14346). Los Alamos National Laboratory (LANL), Los Alamos, NM

  • Dartevelle S (2011) Validation approaches to volcanic explosive phenomenology. In Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice (pp. 398-429). IGI Global

  • Dartevelle S, Valentine GA (2007) Transient multiphase processes during the explosive eruption of basalt through a geothermal borehole (Námafjall, Iceland, 1977) and implications for natural volcanic flows. Earth Planet Sci Lett 262:363–384. https://doi.org/10.1016/j.epsl.2007.07.053

    Article  Google Scholar 

  • de’ Michieli Vitturi M, Neri A, Barsotti S (2015) PLUME-MoM 1.0: a new integral model of volcanic plumes based on the method of moments. Geosci Model Dev 8(8):2447–2463

    Google Scholar 

  • de’ Michieli Vitturi M, Esposti Ongaro T, Lari G, Aravena A (2019) IMEX_SfloW2D 1.0: a depth-averaged numerical flow model for pyroclastic avalanches. Geosci Model Dev 12:581–595. https://doi.org/10.5194/gmd-12-581-2019

    Article  Google Scholar 

  • Dellino P, Zimanowski B, Büttner R, La Volpe L, Mele D, Suplizio R (2007) Large-scale experiments on the mechanics of pyroclastic flows: design, engineering, and first results. J Geophys Res Solid Earth 112:B04202. https://doi.org/10.1029/2006JB004313

    Article  Google Scholar 

  • Dellino P, Büttner R, Dioguardi F, Doronzo DM, La Volpe L, Mele D et al (2010) Experimental evidence links volcanic particle characteristics to pyroclastic flow hazard. Earth Planet Sci Lett 295(1–2):314–320. https://doi.org/10.1016/j.epsl.2010.04.022

    Article  Google Scholar 

  • Dobran F, Neri A, Macedonio G (1993) Numerical simulation of collapsing volcanic columns. J Geophys Res 98(B3):4231–4259

    Google Scholar 

  • Doronzo DM, Valentine GA, Dellino P, de Tullio MD (2010) Numerical analysis of the effect of topography on deposition from dilute pyroclastic density currents. Earth Planet Sci Lett 300(1–2):164–173

    Google Scholar 

  • Doyle EE, Hogg AJ, Mader HM, Sparks RSJ (2010) A two-layer model for the evolution and propagation of dense and dilute regions of pyroclastic currents. J Volcanol Geotherm Res 190:365–378. https://doi.org/10.1016/j.jvolgeores.2009.12.004

    Article  Google Scholar 

  • Druitt TH, Pyroclastic density currents (1998) in Gilbert JS and Sparks RSJ (ed) The physics of explosive volcanic, geological society, London, Special Publications, 145, 145–182. https://doi.org/10.1144/GSL.SP.1996.145.01.08

  • Druitt TH, Avard G, Bruni G, Lettieri P, Maez F (2007) Gas retention in fine-grained pyroclastic flow materials at high temperatures. Bull Volcanol 69(8):881–901

    Google Scholar 

  • Dufek J (2016) The fluid mechanics of pyroclastic density currents. Annu Rev Fluid Mech 48:459–485

    Google Scholar 

  • Dufek J, Bergantz GW (2007a) Suspended load and bed-load transport of particle-laden gravity currents: the role of particle–bed interaction. Theor Comput Fluid Dynamics 21(2):119–145

    Google Scholar 

  • Dufek J, Bergantz GW (2007b) Dynamics and deposits generated by the Kos Plateau Tuff eruption: controls of basal particle loss on pyroclastic flow transport. Geochem Geophys Geosyst 8(12)

  • Dufek J, Roche O, Esposti Ongaro T (2015) Pyroclastic density currents: processes and models. In Encyclopedia of Volcanoes (Academic Press)

  • Engwell SL, de’ Michieli Vitturi M, Esposti Ongaro T, Neri A (2016) Insights into the formation and dynamics of coignimbrite plumes from one-dimensional models. J Geophys Res 121(6):4211–4231

    Google Scholar 

  • Esposti Ongaro T, Cavazzoni C, Erbacci G, Neri A, Salvetti MV (2007) A parallel multiphase flow code for the 3D simulation of explosive volcanic eruptions. Parallel Comput 33(7–8):541–560

    Google Scholar 

  • Esposti Ongaro T, Clarke AB, Neri A, Voight B, Widiwijayanti C (2008) Fluid dynamics of the 1997 boxing day volcanic blast on Montserrat, West Indies. J Geophys Res 113(B3)

  • Esposti Ongaro T, Barsotti S, Neri A, Salvetti MV (2011) Large-eddy simulation of pyroclastic density currents. In Quality and reliability of large-eddy simulations II. Springer, Dordrecht, pp 161–170

    Google Scholar 

  • Esposti Ongaro T, Clarke AB, Voight B, Neri A, Widiwijayanti C (2012) Multiphase flow dynamics of pyroclastic density currents during the May 18, 1980 lateral blast of Mount St. Helens. J Geophys Res 117(B6)

  • Esposti Ongaro T, Orsucci S, Cornolti F (2016) A fast, calibrated model for pyroclastic density currents kinematics and hazard. J Volcanol Geotherm Res 327:257–272

    Google Scholar 

  • Fauria KE, Manga M, Chamberlain M (2016) Effect of particle entrainment on the runout of pyroclastic density currents. J Geophys Res 121:6445–6461. https://doi.org/10.1002/2016JB013263

    Article  Google Scholar 

  • Fink JH, Kieffer SW (1993) Estimate of pyroclastic flow velocities resulting from explosive decompression of lava domes. Nature 363(6430):612–615

    Google Scholar 

  • Fisher RV (1983) Flow transformations in sediment gravity flows. Geology 11(5):273–274

    Google Scholar 

  • Fisher RV (1990) Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St. Helens, Washington. Geol Soc Am Bull 102(8):1038–1054

    Google Scholar 

  • Fox RO (2008) A quadrature-based third-order moment method for dilute gas-particle flows. J Comput Phys 227(12):6313–6350

    Google Scholar 

  • Freundt A, Bursik MI (1998) Pyroclastic flow transport mechanisms, in from magma to tephra: modelling physical processes of explosive volcanic eruptions. Developments in Volcanology (4). Elsevier, Amsterdam, pp. 173-245

  • Freundt A, Wilson CJN, Carey SN (2000) In: Sigurdsson H (ed) Ignimbrites and block-and-ash flow deposits, in encyclopedia of volcanoes. Academic Press, pp 581–600

  • Fujii T, Nakada S (1999) The 15 September 1991 pyroclastic flows at Unzen Volcano (Japan): a flow model for associated ash-cloud surges. J Volcanol Geotherm Res 89(1–4):159–172

    Google Scholar 

  • Galas S (2008) Development of a formal verification and validation database for the computational mass-flow simulator Titan2D. State University of New York at Buffalo

  • Gidaspow D (1994) Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic press

  • Girolami L, Roche O, Druitt TH, Corpetti T (2010) Particle velocity fields and depositional processes in laboratory ash flows, with implications for the sedimentation of dense pyroclastic flows. Bull Volcanol 72(6):747–759. https://doi.org/10.1007/s00445-010-75-9

    Article  Google Scholar 

  • Gladstone C, Philips JC, Sparks RSJ (1998) Experiments on bidisperse, constant-volume gravity currents: propagation and sediment deposition. Sedimentology 45:833–843

    Google Scholar 

  • Goldhirsh I (2008) Introduction to granular temperature. Powder Technol 182:130–136. https://doi.org/10.1016/j.powtec.2007.12.002

    Article  Google Scholar 

  • Goldschmidt MJV, Hoomans BPB, Kuipers JAM (2002) Detailed comparison of Euler-Lagrange and Euler-Euler models for simulation of dense gas fluidised beds. In Proceedings of the 10th Workshop on Two-phase Flow Predictions (pp. 285-299). Merseburg

  • Gueugneau V, Kelfoun K, Roche O, Chupin L (2017) Effects of pore pressure in pyroclastic flows: numerical simulation and experimental validation. Geophys Res Lett 44(5):2194–2202. https://doi.org/10.1002/2017GL072591

    Article  Google Scholar 

  • Gueugneau V, Kelfoun K, Druitt T (2019) Investigation of surge-derived pyroclastic flow formation by numerical modelling of the 25 June 1997 dome collapse at Soufrière Hills Volcano, Montserrat. Bull Volcanol 81(4):25. https://doi.org/10.1007/s00445-019-1284-y

    Article  Google Scholar 

  • Guo Y, Curtis JS (2015) Discrete element method simulations for complex granular flows. Annu Rev Fluid Mech 47:21–46

    Google Scholar 

  • Hallworth MA, Phillips JC, Huppert HE, Sparks RSJ (1993) Entrainment in turbulent gravity currents. Nature 362(6423):829–831

    Google Scholar 

  • Hallworth MA, Hogg AJ, Huppert HE (1998) Effects of external flow on compositional and particle gravity currents. J Fluid Mech 359:109–142

    Google Scholar 

  • Harlow FH, Amsden AA (1975) Numerical calculation of multiphase fluid flow. J Comput Phys 17(1):19–52

    Google Scholar 

  • Hogg AJ, Ungarish M, Huppert HE (2000) Particle-driven gravity currents: asymptotic and box model solutions. Eur J Mech B/Fluids 19(1):139–165. https://doi.org/10.1016/s0997-7546(00)00102-3

    Article  Google Scholar 

  • Huppert HE, Turner JS, Carey SN, Sparks RSJ, Hallworth MA (1986) A laboratory simulation of pyroclastic flows down slopes. J Volcanol Geotherm Res 30(3–4):179–199. https://doi.org/10.1016/0377-0273(86)90054-5

    Article  Google Scholar 

  • Ishimine Y (2004) 3D simulations of a pyroclastic surge as an example of a compressible suspension flow. JSME Int J B/Fluids 47(4):744–749. https://doi.org/10.1299/jsmeb.47.744

    Article  Google Scholar 

  • Ishimine Y (2005) Numerical study of pyroclastic surges. J Volcanol Geotherm Res 139(1–2):33–57. https://doi.org/10.1016/j.jvolgeores.2004.06.017

    Article  Google Scholar 

  • Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J Geophys Res 106(B1):537–552

    Google Scholar 

  • Iverson RM, Vallance JW (2001) New views of granular mass flows. Geology. 29(2):115–118

    Google Scholar 

  • Jacobs CT, Collins GS, Piggott MD, Kramer SC, Wilson CRG (2012) Multiphase flow modelling of volcanic ash particle settling in water using adaptive unstructured meshes. Geophys J Int 192(2):647–665

    Google Scholar 

  • Kelfoun K (2011) Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout volcanic avalanches. J Geophys Res 116(B8)

  • Kelfoun K (2017) A two-layer depth-averaged model for both the dilute and the concentrated parts of pyroclastic currents. J Geophys Res 122(6):4293–4311

    Google Scholar 

  • Kelfoun K, Samaniego PP, Barba D (2009) Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador). Bull Volcanol 71(9):1057–1075

    Google Scholar 

  • Kelfoun K, Gueugneau V, Komorowski JC, Aisyah N, Cholik N, Merciecca C (2017) Simulation of block-and-ash flows and ash-cloud surges of the 2010 eruption of Merapi volcano with a two-layer model. J Geophys Res Solid Earth 122:4277–4292. https://doi.org/10.1002/2017JB013981

    Article  Google Scholar 

  • Lube G, Huppert HE, Sparks RSJ, Freundt A (2011) Granular column collapses down rough, inclined channels. J Fluid Mech 675:347–368. https://doi.org/10.1017/jfm.2011.21

  • Lube G, Breard ECP, Cronin SJ, Jones J (2015) Synthesizing large-scale pyroclastic flows: experimental design, scaling, and first results from PELE. J Geophys Res Solid Earth 120:1487–1502. https://doi.org/10.1002/2014JB01666

    Article  Google Scholar 

  • Marble FE (1970) Dynamics of dusty gases. Annu Rev Fluid Mech 2(1):397–446

    Google Scholar 

  • Mason PJ (1994) Large-eddy simulation: a critical review of the technique. Q J R Meteorol Soc 120:1–26

    Google Scholar 

  • Maxey MR (1987) The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J Fluid Mech 174:441–465

    Google Scholar 

  • McEwen AS, Malin MC (1989) Dynamics of Mount St. Helens’ 1980 pyroclastic flows, rockslide-avalanche, lahars, and blast. J Volcanol Geotherm Res 37(3–4):205–231

    Google Scholar 

  • Meruane C, Tamburrino A, Roche O (2010) On the role of the ambient fluid on gravitational granular flow dynamics. J Fluid Mech 648:381–404

    Google Scholar 

  • Monaghan JJ (2012) Smoothed particle hydrodynamics and its diverse applications. Annu Rev Fluid Mech 44:323–346

    Google Scholar 

  • Neri A, Gidaspow D (2000) Riser hydrodynamics: simulation using kinetic theory. AICHE J 46(1):52–67

    Google Scholar 

  • Neri A, Papale P, Del Seppia D, Santacroce R (2003a) Coupled conduit and atmospheric dispersal dynamics of the AD 79 Plinian eruption of Vesuvius. J Volcanol Geotherm Res 120(1–2):141–160

    Google Scholar 

  • Neri A, Esposti Ongaro T, Macedonio G, Gidaspow D (2003b) Multiparticle simulation of collapsing volcanic columns and pyroclastic flow. J Geophys Res 108(B4). https://doi.org/10.1029/2001JB000508

  • Neri A, Esposti Ongaro T, Voight B, Widiwijayanti C (2014) Pyroclastic density current hazards and risk. In: Papale P, Shroder J (eds) Volcanic hazards, risks and disasters, 109–140. Academic Press

  • Neri A, Bevilacqua A, Esposti Ongaro T et al (2015) Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps. J Geophys Res 120(4):2330–2349

    Google Scholar 

  • Oberkampf WL, Trucano TG (2002) Verification and validation in computational fluid dynamics. Prog Aerosp Sci 38(3):209–272

    Google Scholar 

  • Ogburn SE, Calder ES (2017) The relative effectiveness of empirical and physical models for simulating the dense undercurrent of pyroclastic flows under different emplacement conditions. Front Earth Sci 5:83. https://doi.org/10.3389/feart.2017.00083

    Article  Google Scholar 

  • Ogburn SE, Berger J, Calder ES, Lopes D, Patra A, Pitman et al (2016) Pooling strength amongst limited datasets using hierarchical Bayesian analysis, with application to pyroclastic density current mobility metrics. Stat Volcanol 2(1):1–26

    Google Scholar 

  • Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263(5147):641–646

    Google Scholar 

  • Özgökmen TM, Iliescu T, Fischer PF, Srinivasan A, Duan J (2007) Large eddy simulation of stratified mixing in two-dimensional dam-break problem in a rectangular enclosed domain. Ocean Model 16(1–2):106–140. https://doi.org/10.1016/j.ocemod.2006.08.006

    Article  Google Scholar 

  • Patra AK, Bauer AC, Nichita CC, Pitman EB, Sheridan MF, Bursik M, Rupp B, Webber A, Stinton AJ, Namikawa LM, Renschler CS (2005) Parallel adaptive numerical simulation of dry avalanches over natural terrain. J Volcanol Geotherm Res 139(1–2):1–21

    Google Scholar 

  • Peakall J, Felix M, McCaffrey B, Kneller B (2001) Particulate gravity currents: perspectives. Special publication-International Association of Sedimentologists, 31:1–10

  • Pudasaini SP, Hutter K (2007) Avalanche dynamics: dynamics of rapid flows of dense granular avalanches. Springer Science & Business Media

  • Roache PJ (2002) Code verification by the method of manufactured solutions. Trans ASME J Fluids Eng 124:4–10

    Google Scholar 

  • Roche O, Montserrat S, Niño Y. Tamburrino A (2010) Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: insights into the emplacement dynamics of pyroclastic flows. J Geophys Res 115:B09206. https://doi.org/10.1029/2009JB007133

  • Roche O, Attali M, Mangeney A, Lucas A (2011) On the run-out distance of geophysical gravitational flows: insight from fluidized granular collapse experiments. Earth Planet Sci Lett 311(3–4):375–385. https://doi.org/10.1016/j.epsl.2011.09.023

    Article  Google Scholar 

  • Rodriguez-Sedano LA, Sarocchi D, Sulpizio R, Borselli L, Campos G, Chavez GM (2016) Influence of particle density on flow behavior and deposit architecture of concentrated pyroclastic density currents over a break in slope: insights from laboratory experiments. J Volcanol Geotherm Res 328:178–186

    Google Scholar 

  • Rosi M, Di Traglia F, Pistolesi M, Esposti Ongaro T, de' Michieli Vitturi M, Bonadonna C (2018) Dynamics of shallow hydrothermal eruptions: new insights from Vulcano’s Breccia di Commenda eruption. Bull Volcanol 80. https://doi.org/10.1007/s00445-018-1252-y

  • Rossano S, Mastrolorenzo G, De Natale G (2004) Numerical simulation of pyroclastic density currents on Campi Flegrei topography: a tool for statistical hazard estimation. J Volcanol Geotherm Res 132(1):1–14

    Google Scholar 

  • Saucedo R, Macías JL, Sheridan MF, Bursik MI, Komorowski JC (2005) Modeling of pyroclastic flows of Colima Volcano, Mexico: implications for hazard assessment. J Volcanol Geotherm Res 139(1–2):103–115

    Google Scholar 

  • Sheridan M, Malin M (1983) Application of computer-assisted mapping to volcanic hazard evaluation of surge eruptions: Vulcano, Lipari, and Vesuvius. J Volcanol Geotherm Res 17:187–202. https://doi.org/10.1016/0377-0273(83)90067-7

    Article  Google Scholar 

  • Sheridan MF, Stinton AJ, Patra A, Pitman EB, Bauer A, Nichita CC (2005) Evaluating Titan2D mass-flow model using the 1963 Little Tahoma peak avalanches, Mount Rainier, Washington. J Volcanol Geotherm Res 139(1–2):89–102

    Google Scholar 

  • Shimizu HA, Koyaguchi T, Suzuki YJ (2017) A numerical shallow-water model for gravity currents for a wide range of density differences. Progress Earth Planet Sci 4(1):8

    Google Scholar 

  • Shimizu HA, Koyaguchi T, Suzuki YJ (2019) The run-out distance of large-scale pyroclastic density currents: a two-layer depth-averaged model. J Volcanol Geotherm Res 381:168–184

    Google Scholar 

  • Sparks RSJ (1976) Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23(2:147–188. https://doi.org/10.1111/j.1365-3091.1976.tb00045.x

    Article  Google Scholar 

  • Sparks RSJ, Aspinall WP (2015) Volcanic activity: frontiers and challenges in forecasting, prediction and risk assessment. In Volcanism and the Earth’s Atmosphere (Vol. 150, pp. 359–373). Washington, D C: American Geophysical Union https://doi.org/10.1029/150GM28, 2004

  • Sparks RSJ, Bonnecaze RT, Huppert HE, Lister JR, Hallworth MA, Mader H, Phillips J (1993) Sediment-laden gravity currents with reversing buoyancy. Earth Planet Sci Lett 114(2–3):243–257. https://doi.org/10.1016/0012-821x(93)90028-8

    Article  Google Scholar 

  • Staron L, Phillips JC (2014) Segregation time-scale in bi-disperse granular flows. Phys Fluids 26(3):033302

    Google Scholar 

  • Stinton AJ, Sheridan MF, Patra AK, Dalbey K, Namikawa LM (2004) Integrating variable bed friction into Titan2D mass-flow model: application to the Little Tahoma Peak avalanches, Washington. Acta Vulcanol 16:153–163

    Google Scholar 

  • Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–65

    Google Scholar 

  • Sweeney MR, Valentine GA (2017) Impact zone dynamics of dilute mono-and polydisperse jets and their implications for the initial conditions of pyroclastic density currents. Phys Fluids 29(9):093304

    Google Scholar 

  • Takahashi T, Tsujimoto H (2000) A mechanical model for Merapi-type pyroclastic flow. J Volcanol Geotherm Res 98(1–4):91–115

    Google Scholar 

  • Tao X (2015) A general framework for verification and validation of large eddy simulations. J Hydrodyn 27(2):163–175. https://doi.org/10.1016/S1001-6058(15)60469-3

    Article  Google Scholar 

  • Tierz P, Sandri L, Costa A, Zaccarelli L, Di Vito MA, Sulpizio R et al (2016) Suitability of energy cone for probabilistic volcanic hazard assessment: validation tests at Somma-Vesuvius and Campi Flegrei (Italy). Bull Volcanol 78:79. https://doi.org/10.1007/s00445-016-1073-9

    Article  Google Scholar 

  • Valentine GA (1987) Stratified flow in pyroclastic surges. Bull Volcanol 49(4):616–630

    Google Scholar 

  • Valentine GA, Fisher RV (1986) Origin of layer 1 deposits in ignimbrites. Geology 14:146–148

    Google Scholar 

  • Valentine GA, Fisher RV (2000) Pyroclastic surges and blasts. In: Sigurdsson H (ed) Encyclopedia of Volcanoes. Academic Press, pp 571–580

  • Valentine GA, Sweeney MR (2018) Compressible flow phenomena at inception of lateral density currents fed by collapsing gas-particle mixtures. J Geophys Res Solid Earth 123:1286–1302. https://doi.org/10.1002/2017JB015129

    Article  Google Scholar 

  • Valentine GA, Wohletz KH (1989) Numerical models of Plinian eruption columns and pyroclastic flows. J Geophys Res 94(B2):1867–1887

    Google Scholar 

  • Wadge G, Jackson P, Bower SM, Woods AW, Calder E (1998) Computer simulations of pyroclastic flows from dome collapse. Geophys Res Lett 25(19):3677–3680

    Google Scholar 

  • Walker G (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79(6):696–714

    Google Scholar 

  • Webb A, Bursik MI (2016) Granular flow experiments for validation of numerical flow models, https://vhub.org/resources/4058

  • Weit A, Roche O, Dubois T, Manga M (2019) Maximum solid phase concentration in geophysical turbulent gas-particle flows: insights from laboratory experiments. Geophys Res Lett 46(12):6388–6396

    Google Scholar 

  • Widiwijayanti C, Voight B, Hidayat D, Patra A, Pitman E (2004) Validation of TITAN2D flow model code for pyroclastic flows and debris avalanches at Soufrière Hills Volcano, Montserrat, BWI. In AGU Fall Meeting Abstracts

  • Widiwijayanti C, Voight B, Hidayat D, Schilling SP (2009) Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges. Bull Volcanol 71(6):687–703

    Google Scholar 

  • Wohletz KH, McGetchin TR, Sandford MT, Jones EM (1984) Hydrodynamic aspects of caldera-forming eruptions: numerical models. J Geophys Res 89(B10):8269–8285

    Google Scholar 

  • Woods AW, Bursik MI, Kurbatov AV (1998) The interaction of ash flows with ridges. Bull Volcanol 60(1):38–51. https://doi.org/10.1007/s004450050215

    Article  Google Scholar 

  • Yamamoto T, Takarada S, Suto S (1993) Pyroclastic flows from the 1991 eruption of Unzen volcano, Japan. Bull Volcanol 55(3):166–175. https://doi.org/10.1007/bf00301514

    Article  Google Scholar 

Download references

Acknowledgments

This paper is partly based upon a series of workshops organized by, and involving, a variety of researchers over the past 12 years; the most recent workshop (2019, Taupo and Palmerston North, New Zealand) was organized by Massey University in collaboration with Istituto Nazionale di Geofisica e Vulcanologia (Pisa, Italy) and supported by the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) Commission on Explosive Volcanism. Charbonnier’s contribution to the paper was supported by US National Science Foundation CAREER grant number 1751905. Valentine’s work on pyroclastic currents is supported by the US National Science Foundation (grant EAR-1623793). We thank the Associate Editor J. Dufek, A. Burgisser and an anonymous referee for their insigthful reviews of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Esposti Ongaro.

Additional information

Editorial responsibility: J. Dufek

This paper constitutes part of a topical collection: Pyroclastic current models: benchmarking and validation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esposti Ongaro, T., Cerminara, M., Charbonnier, S.J. et al. A framework for validation and benchmarking of pyroclastic current models. Bull Volcanol 82, 51 (2020). https://doi.org/10.1007/s00445-020-01388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-01388-2

Keywords

  • Pyroclastic currents
  • Numerical models
  • Validation
  • Verification
  • Benchmarking