Did ice-charging generate volcanic lightning during the 2016–2017 eruption of Bogoslof volcano, Alaska?

Abstract

The 2016–2017 shallow submarine eruption of Bogoslof volcano in Alaska injected plumes of ash and seawater to maximum heights of ~ 12 km. More than 4550 volcanic lightning strokes were detected by the World Wide Lightning Location Network (WWLLN) and Vaisala’s Global Lightning Dataset (GLD360) over 9 months. Lightning assisted monitoring efforts by confirming ash-producing explosions in near-real time, but only 32 out of the 70 explosive events produced detectable lightning. What led to electrical activity within some of the volcanic plumes, but not others? And why did the lightning intensity wax and wane over the lifetime of individual explosions? We address these questions using multiparametric observations from ground-based lightning sensors, satellite imagery, photographs, acoustic signals, and 1D plume modeling. Detailed time-series of monitoring data show that the plumes did not produce detectable lightning until they rose higher than the atmospheric freezing level (approximated by − 20 °C temperatures). For example, on 28 May 2017 (event 40), the delayed onset of lightning coincides with modeled ice formation in upper levels of the plume. Model results suggest that microphysical conditions inside the plume rivaled those of severe thunderstorms, with liquid water contents > 5 g m−3 and vigorous updrafts > 40 m s−1 in the mixed-phase region where liquid water and ice coexist. Based on these findings, we infer that ‘thunderstorm-style’ collisional ice-charging catalyzed the volcanic lightning. However, charge mechanisms likely operated on a continuum, with silicate collisions dominating electrification in the near-vent region, and ice charging taking over in the upper-level plumes. A key implication of this study is that lightning during the Bogoslof eruption provided a reliable indicator of sustained, ash-rich plumes (and associated hazards) above the atmospheric freezing level.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abarca SF, Corbosiero KL, Galarneau TJ (2010) An evaluation of the worldwide lightning location network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J Geophys Res 115:D18206. https://doi.org/10.1029/2009jd013411

    Article  Google Scholar 

  2. Anderson R, Björnsson S, Blanchard DC, Gathman S, Hughes J, Jónasson S, Moore CB, Survilas HJ, Vonnegut B (1965) Electricity in volcanic clouds. Science 148:1179–1189 https://www.jstor.org/stable/1716180

    Article  Google Scholar 

  3. Andrews VP, Genareau KD, Naeger A, Schulz CJ (2018) Using NASA and NOAA satellite data to improve volcanic ash plume modeling for impact-based decision support. Abstract A41G-3044 presented at fall AGU meeting, Washington, D.C, 10–14 Dec. https://agu.confex.com/agu/fm18/meetingapp.cgi/Paper/467280

  4. Arason P, Bennett AJ, Burgin LE (2011) Charge mechanism of volcanic lightning revealed during the 2010 eruption of Eyjafjallajökull. J Geophys Res 116:B00C03. https://doi.org/10.1029/2011jb008651

    Article  Google Scholar 

  5. Behnke SA, Bruning EC (2015) Changes to the turbulent kinematics of a volcanic plume inferred from lightning data. Geophys Res Lett 42:4232–4239. https://doi.org/10.1002/2015gl064199

    Article  Google Scholar 

  6. Behnke SA, McNutt SR (2014) Using lightning observations as a volcanic eruption monitoring tool. Bull Volcanol 76:847–812. https://doi.org/10.1007/s00445-014-0847-1

    Article  Google Scholar 

  7. Behnke SA, Thomas RJ, McNutt SR, Schneider DJ, Krehbiel PR, Rison W, Edens HE (2013) Observations of volcanic lightning during the 2009 eruption of redoubt volcano. J Volcanol Geotherm Res 259:214–234. https://doi.org/10.1016/j.jvolgeores.2011.12.010

    Article  Google Scholar 

  8. Behnke SA, Thomas RJ, Edens HE, Krehbiel PR, Rison W (2014) The 2010 eruption of Eyjafjallajökull: lightning and plume charge structure. J Geophys Res 119:833–859. https://doi.org/10.1002/2013jd020781

    Article  Google Scholar 

  9. Behnke SA, Edens HE, Thomas RJ, Smith CM, McNutt SR, Van Eaton AR, Cimarelli C, Cigala V (2018) Investigating the origin of continual radio frequency impulses during explosive volcanic eruptions. J Geophys Res Atmos 123:4157–4174. https://doi.org/10.1002/2017jd027990

    Article  Google Scholar 

  10. Biagi CJ, Cummins KL, Kehoe KE, Krider EP (2007) National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J Geophys Res 112:D05208. https://doi.org/10.1029/2006jd007341

    Article  Google Scholar 

  11. Bitzer PM, Burchfield JC (2016) Bayesian techniques to analyze and merge lightning locating system data. Geophys Res Lett 43:12,605–612,613. https://doi.org/10.1002/2016gl071951

    Article  Google Scholar 

  12. Björnsson S, Blanchard DC, Spencer AT (1967) Charge generation due to contact of saline waters with molten lava. J Geophys Res 72:1311–1323

    Article  Google Scholar 

  13. Black RA and Hallett J (1999): Electrification of the Hurricane. J. Atmos. Sci., 56:2004–2028. https://doi.org/10.1175/1520-0469(1999)056<2004:EOTH>2.0.CO;2

    Article  Google Scholar 

  14. Cimarelli C, Alatorre-Ibarguengoitia MA, Kueppers U, Scheu B, Dingwell DB (2013) Experimental generation of volcanic lightning. Geology 42:79–82. https://doi.org/10.1130/g34802.1

    Article  Google Scholar 

  15. Cimarelli C, Alatorre-Ibargüengoitia MA, Aizawa K, Yokoo A, Díaz-Marina A, Iguchi M, Dingwell DB (2016) Multiparametric observation of volcanic lightning: Sakurajima volcano, Japan. Geophys Res Lett 43:4221–4228. https://doi.org/10.1002/2015gl067445

    Article  Google Scholar 

  16. Coombs ML, Wech AG, Haney MM, Lyons JJ, Schneider DJ, Schwaiger HF, Wallace KL, Fee D, Freymueller JT, Schaefer JR, Tepp G (2018) Short-term forecasting and detection of explosions during the 2016–2017 eruption of Bogoslof volcano, Alaska. Front Earth Sci 6. https://doi.org/10.3389/feart.2018.00122

  17. Coombs M, Wallace K, Cameron C, Lyons J, Wech A, Angeli K, Cervelli P (2019) Overview, chronology, and impacts of the 2016–2017 eruption of Bogoslof volcano, Alaska. Bull Volcanol 81:62. https://doi.org/10.1007/s00445-019-1322-9

  18. Deierling W, Petersen WA, Latham J, Ellis S, Christian HJ (2008) The relationship between lightning activity and ice fluxes in thunderstorms. J Geophys Res 113:D15210. https://doi.org/10.1029/2007jd009700

    Article  Google Scholar 

  19. Emersic C, Saunders CPR (2010) Further laboratory investigations into the relative diffusional growth rate theory of thunderstorm electrification. Atmos Res 98:327–340. https://doi.org/10.1016/j.atmosres.2010.07.011

    Article  Google Scholar 

  20. Fee D, Haney MM, Matoza RS, Van Eaton AR, Cervelli P, Schneider DJ, Iezzi AM (2017) Volcanic tremor and plume height hysteresis from Pavlof volcano, Alaska. Science 355:45–48

    Article  Google Scholar 

  21. Fee D, Lyons J, Haney M, Wech A, Waythomas C, Diefenbach AK, Lopez T, Van Eaton AR, Schneider D (2020) Seismo-acoustic evidence for vent drying during shallow submarine eruptions at Bogolsof volcano, Alaska. Bull Volcanol 82:2. https://doi.org/10.1007/s00445-019-1326-5

  22. Garrett TJ, Dean-Day J, Liu C, Barnett B, Mace G, Baumgardner D, Webster C, Bui T, Read W, Minnis P (2006) Convective formation of pileus cloud near the tropopause. Atmos Chem Phys 6:1185–1200 www.atmos-chem-phys.net/6/1185/2006/

    Article  Google Scholar 

  23. Gaudin D, Cimarelli C (2019) The electrification of volcanic jets and controlling parameters: a laboratory study. Earth Planet Sci Lett 513:69–80. https://doi.org/10.1016/j.epsl.2019.02.024

    Article  Google Scholar 

  24. Haney MM, Van Eaton AR, Lyons JJ, Kramer RL, Fee D, Iezzi AM (2018) Volcanic thunder from explosive eruptions at Bogoslof volcano, Alaska. Geophys Res Lett 45:3429–3435. https://doi.org/10.1002/2017gl076911

    Article  Google Scholar 

  25. Haney MM, Van Eaton AR, Lyons JJ, Kramer RL, Fee D, Iezzi AM, Dziak RP, Anderson J, Johnson JB, Lapierre JL, Stock M (2020) Characteristics of thunder and electromagnetic pulses from volcanic lightning at Bogoslof volcano, Alaska. Bull Volcanol 82:15. https://doi.org/10.1007/s00445-019-1349-y

  26. Hargie KA, Van Eaton AR, Mastin LG, Holzworth RH, Ewert JW, Pavolonis M (2019) Globally detected volcanic lightning and umbrella dynamics during the 2014 eruption of Kelud, Indonesia. J Volcanol Geotherm Res 382:81–91. https://doi.org/10.1016/j.jvolgeores.2018.10.016

    Article  Google Scholar 

  27. Houghton B, White JDL, Van Eaton AR (2015) Phreatomagmatic and related eruption styles. In: Sigurdsson H, Houghton BF, Rymer H, Stix J, McNutt SR (eds) The encyclopedia of volcanoes. Academic Press, San Diego, pp 537–552

    Google Scholar 

  28. Hutchins ML, Holzworth RH, Brundell JB, Rodger CJ (2012a) Relative detection efficiency of the world wide lightning location network. Radio Sci 47:RS6005. https://doi.org/10.1029/2012rs005049

    Article  Google Scholar 

  29. Hutchins ML, Holzworth RH, Rodger CJ, Heckman S, Brundell JB (2012b) WWLLN absolute detection efficiencies and the global lightning source function. Geophys Res Abstr 14:EGU2012–EG12917

    Google Scholar 

  30. James MR, Lane SJ, Gilbert JS (2000) Volcanic plume electrification: experimental investigation of a fracture-charging mechanism. J Geophys Res Solid Earth 105:16641–16649. https://doi.org/10.1029/2000jb900068

    Article  Google Scholar 

  31. James MR, Wilson L, Lane SJ, Gilbert JS, Mather TA, Harrison RG, Martin RS (2008) Electrical charging of volcanic plumes. Space Sci Rev 137:399–418. https://doi.org/10.1007/s11214-008-9362-z

    Article  Google Scholar 

  32. Jónasson S (1965) Cover photo: Lightning in volcano cloud. Science 148(3674) https://science.sciencemag.org/content/sci/148/3674/local/front-matter.pdf

  33. Lapierre J, Van Eaton AR, Stock M, Haney MM, Lyons JJ (2018) Remote measurements of volcanic plume electrification using a sparse network technique. Abstract O2–11 presented at the WMO technical conference on meteorological and environmental Instrumenets and methods of observation Amsterdam, the Netherlands 8–11 October 2018. https://www.wmocimo.net/wp-content/uploads/O2_11_Lapierre_2018_cimo-teco_extended_abstract_final.pdf

  34. LaRoche KT, Lang TJ (2017) Observations of ash, ice, and lightning within pyrocumulus clouds using polarimetric NEXRAD radars and the National Lightning Detection Network. Mon Weather Rev 145:4899–4910. https://doi.org/10.1175/mwr-d-17-0253.1

    Article  Google Scholar 

  35. Loewen MW, Izbekov P, Moshrefzadeh J, Coombs M, Larsen J, Graham N, Harbin M, Waythomas C, Wallace K (2019) Petrology of the 2016–2017 eruption of Bogoslof Island, Alaska. Bull Volcanol 81:72. https://doi.org/10.1007/s00445-019-1333-6

  36. Loney ML, Zrnić DS, Straka JM, Ryzhkov AV (2002) Enhanced polarimetric radar signatures above the melting level in a supercell storm. J Appl Meteorol 41:1179–1194

    Article  Google Scholar 

  37. Lopez T, Clarisse L, Schwaiger HF, Van Eaton AR, Loewen MW, Fee D, Lyons JJ, Wallace KL, Searcy C, Wech AG, Schneider DJ, Haney MM, Graham N (2020) Constraints on eruption processes and event masses for the 2016-2017 eruption of Bogoslof volcano, Alaska, through evaluation of IASI satellite SO2 masses and complementary datasets. Bull Volcanol (part of the Bogoslof Topical Collection). https://doi.org/10.1007/s00445-019-1348-z

  38. Lyons JJ, Haney MM, Fee D, Wech A, Waythomas C (2019) Infrasound from giant bubbles during explosive submarine eruptions of Bogoslof volcano, Alaska. Nat Geosci 12:952–958. https://doi.org/10.1038/s41561-019-0461-0

    Article  Google Scholar 

  39. Lyons JJ, Iezzi AM, Fee D, Schwaiger HF, Wech AG, Haney MM (2020) Infrasound generated by the 2016-17 shallow submarine eruption of Bogoslof volcano, Alaska. Bull Volcanol (part of the Bogoslof Topical Collection). https://doi.org/10.1007/s00445-019-1355-0

  40. Mallick S, Rakov VA, Ngin T, Gamerota WR, Pilkey JT, Hill JD, Uman MA, Jordan DM, Nag A, Said RK (2014) Evaluation of the GLD360 performance characteristics using rocket-and-wire triggered lightning data. Geophys Res Lett 41:3636–3642. https://doi.org/10.1002/2014gl059920

    Article  Google Scholar 

  41. Mastin LG (2007) A user-friendly one-dimensional model for wet volcanic plumes. Geochem Geophys Geosyst 8:Q03014. https://doi.org/10.1029/2006GC001455

    Article  Google Scholar 

  42. Mastin LG (2014) Testing the accuracy of a 1-D volcanic plume model in estimating mass eruption rate. J Geophys Res 119:2474–2495. https://doi.org/10.1002/2013JD020604

    Article  Google Scholar 

  43. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186:10–21. https://doi.org/10.1016/j.jvolgeores.2009.01.008

    Article  Google Scholar 

  44. Mather TA, Harrison RG (2006) Electrification of volcanic plumes. Surv Geophys 27:387–432. https://doi.org/10.1007/s10712-006-9007-2

    Article  Google Scholar 

  45. McNutt SR, Williams ER (2010) Volcanic lightning: global observations and constraints on source mechanisms. Bull Volcanol 72:1153–1167. https://doi.org/10.1007/s00445-010-0393-4

    Article  Google Scholar 

  46. Méndez Harper J, Dufek J (2016) The effects of dynamics on the triboelectrification of volcanic ash. J Geophys Res Atmos 121:8209–8228. https://doi.org/10.1002/2015jd024275

    Article  Google Scholar 

  47. Moore JG (1985) Structure and eruptive mechanisms at Surtsey volcano, Iceland. Geol Mag 122:649–661. https://doi.org/10.1017/S0016756800032052

    Article  Google Scholar 

  48. Moxnes ED, Kristiansen NI, Stohl A, Clarisse L, Durant A, Weber K, Vogel A (2014) Separation of ash and sulfur dioxide during the 2011 Grímsvötn eruption. J Geophys Res Atmos 119:7477–7501. https://doi.org/10.1002/2013JD021129

    Article  Google Scholar 

  49. Nicoll K, Airey M, Cimarelli C, Bennett A, Harrison G, Gaudin D, Aplin K, Koh KL, Knuever M, Marlton G (2019) First In Situ Observations of Gaseous Volcanic Plume Electrification. Geophys. Res. Lett. 46(6):3532–3539. https://doi.org/10.1029/2019gl082211

    Article  Google Scholar 

  50. Pessi AT, Businger S, Cummins KL, Demetriades NWS, Murphy M, Pifer B (2009) Development of a long-range lightning detection network for the Pacific: construction, calibration, and performance. J Atmos Ocean Technol 26:145–166. https://doi.org/10.1175/2008jtecha1132.1

    Article  Google Scholar 

  51. Pounder C (1972) Electrification from salt water on heated metals. J Phys D Appl Phys 5:753–755. https://doi.org/10.1088/0022-3727/5/4/415

    Article  Google Scholar 

  52. Reinhart B, Fuelberg H, Blakeslee R, Mach D, Heymsfield A, Bansemer A, Durden SL, Tanelli S, Heymsfield G, Lambrigtsen B (2014) Understanding the relationships between lightning, cloud microphysics, and airborne radar-derived storm structure during Hurricane Karl (2010). Monthly Weather Review 142(2):590–605. https://doi.org/10.1175/mwr-d-13-00008.1

    Article  Google Scholar 

  53. Rodger CJ, Brundell JB, Dowden RL (2005) Location accuracy of VLF world-wide lightning location (WWLL) network: post-algorithm upgrade. Ann Geophys 23:277–290. https://doi.org/10.5194/angeo-23-277-2005

    Article  Google Scholar 

  54. Rybin A, Chibisova M, Webley P, Steensen T, Izbekov P, Neal C, Realmuto V (2011) Satellite and ground observations of the June 2009 eruption of Sarychev peak volcano, Matua Island, central Kuriles. Bull Volcanol 73:1377–1392. https://doi.org/10.1007/s00445-011-0481-0

    Article  Google Scholar 

  55. Said R (2018) Analysis of VLF Sferic attenuation in the earth-ionosphere waveguide using GLD360 sensor data. Abstract AE21B-3133 presented at fall AGU meeting, Washington, D.C.

  56. Said R, Murphy M (2016) GLD360 upgrade: performance analysis and applications. Presented at the 24th international lightning detection conference & 6th international lightning meteorology conference. https://www.vaisala.com/sites/default/files/documents/Ryan%20Said%20and%20Martin%20Murphy.%20GLD360%20Upgrade%20Performance%20Analysis%20and%20Applications.pdf

  57. Said RK, Inan US, Cummins KL (2010) Long-range lightning geolocation using a VLF radio atmospheric waveform bank. J Geophys Res 115. https://doi.org/10.1029/2010jd013863

  58. Said RK, Cohen MB, Inan US (2013) Highly intense lightning over the oceans: estimated peak currents from global GLD360 observations. J Geophys Res Atmos 118:6905–6915. https://doi.org/10.1002/jgrd.50508

    Article  Google Scholar 

  59. Saunders C (2008) Charge separation mechanisms in clouds. Space Sci Rev 137:335–353. https://doi.org/10.1007/s11214-008-9345-0

    Article  Google Scholar 

  60. Saunders CPR, Peck SL (1998) Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions. J Geophys Res Atmos 103:13949–13956. https://doi.org/10.1029/97jd02644

    Article  Google Scholar 

  61. Schill GP, Genareau K, Tolbert MA (2015) Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash. Atmos Chem Phys 15:7523–7536. https://doi.org/10.5194/acp-15-7523-2015

    Article  Google Scholar 

  62. Schipper CI, White JDL (2016) Magma-slurry interaction in Surtseyan eruptions. Geology 44:195–198. https://doi.org/10.1130/g37480.1

    Article  Google Scholar 

  63. Schneider DJ, Rose WI, Coke LR, Bluth GJS (1999) Early evolution of a stratospheric volcanic eruption cloud as observed with TOMS and AVHRR. J Geophys Res 104:4037–4050

    Article  Google Scholar 

  64. Schneider DJ, Van Eaton AR, Wallace KL (2020) Satellite observations of the 2016-17 Eruption of Bogoslof volcano: aviation and ash fallout hazard implications from a water-rich eruption. Bull Volcanol (part of the Bogoslof Topical Collection)

  65. Schultz EV, Schultz CJ, Carey LD, Cecil DJ, Bateman M (2016) Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data. J Operat Meteorol 4:92–107. https://doi.org/10.15191/nwajom.2016.0407

    Article  Google Scholar 

  66. Schwaiger HF, Lyons JJ, Iezzi AM, Haney M (2020) Evolving infrasound detections from Bogoslof volcano, Alaska: Insights from atmospheric propagation modeling. Bull Volcanol (part of the Bogoslof Topical Collection)

  67. Shevtsov BM, Firstov PP, Cherneva NV, Holzworth RH, Akbashev RR (2016) Lightning and electrical activity during the Shiveluch volcano eruption on 16 November 2014. Nat Hazards Earth Syst Sci 16:871–874. https://doi.org/10.5194/nhess-16-871-2016

    Article  Google Scholar 

  68. Smith CM (2019) Volcanic Electrification: A multiparametric case study of Sakurajima Volcano, Japan. PhD Thesis, University of South Florida

  69. Smith CM, Van Eaton AR, Said R, Holzworth RH (2018a) Volcanic lightning as a monitoring tool during the 2016–2017 eruption of Bogoslof volcano, AK. Abstract presented at the International Lightning Detection Conference/ International Lightning Meteorology Conference, 12–15 March, Ft. Lauderdale. https://www.vaisala.com/sites/default/files/documents/Volcanic%20lightning%20as%20monitoring%20tool%20during%202016-2017%20eruption%20of%20Bogoslof%20Volcano%20AK_C.M.%20Smith%20et%20al.pdf

  70. Smith CM, Van Eaton AR, Charbonnier S, McNutt SR, Behnke SA, Thomas RJ, Edens HE, Thompson G (2018b) Correlating the electrification of volcanic plumes with ashfall textures at Sakurajima volcano, Japan. Earth Planet Sci Lett 492:47–58. https://doi.org/10.1016/j.epsl.2018.03.052

    Article  Google Scholar 

  71. Takahashi T (1978) Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci. 35:1536–1548. https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2

    Article  Google Scholar 

  72. Tepp G, Dziak RP, Haney MM, Lyons JJ, Searcy C, Matsumoto H, Haxel J (2020) Seismic and hydroacoustic observations of the 2016-17 Bogoslof eruption. Bull Volcanol 82:4. https://doi.org/10.1007/s00445-019-1344-3

  73. Thomas RJ, McNutt SR, Krehbiel PR, Rison W, Aulich G, Edens HE, Tytgat G, Clark E (2010) Lightning and electrical activity during the 2006 eruption of Augustine volcano. US Geol Surv Prof Pap 1769:579–608

    Google Scholar 

  74. Thorarinsson S (1967) Surtsey—the New Island in the North Atlantic. Viking Press, New York, p 105

    Google Scholar 

  75. Tsutomu T (1978) Riming electrification as a charge generation mechanism in thunderstorms. J Atmos Sci 35:1536–1548. https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2

    Article  Google Scholar 

  76. Van Eaton AR, Herzog M, Wilson CJN, McGregor J (2012) Ascent dynamics of large phreatomagmatic eruption clouds: the role of microphysics. J Geophys Res 117:B03203. https://doi.org/10.1029/2011JB008892

    Article  Google Scholar 

  77. Van Eaton AR, Mastin LG, Herzog M, Schwaiger HF, Schneider DJ, Wallace KL, Clarke AB (2015) Hail formation triggers rapid ash aggregation in volcanic plumes. Nat Commun 6:7860. https://doi.org/10.1038/ncomms8860

    Article  Google Scholar 

  78. Van Eaton AR, Amigo Á, Bertin D, Mastin LG, Giacosa RE, González J, Valderrama O, Fontijn K, Behnke SA (2016) Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile. Geophys Res Lett 43:3563–3571. https://doi.org/10.1002/2016GL068076

    Article  Google Scholar 

  79. Walker G, Croasdale R (1972) Characteristics of some basaltic pyroclasts. Bull Volcanol 35:303–317. https://doi.org/10.1007/BF02596957

    Article  Google Scholar 

  80. Waythomas CF, Angeli K, Wessels RL (2020) Evolution of the submarine-subaerial edifice of Bogoslof volcano, Alaska, during its 2016-2017 eruption based on analysis of satellite imagery. Bull Volcanol (part of the Bogoslof Topical Collection)

  81. Wech A, Tepp G, Lyons J, Haney M (2018) Using earthquakes, T waves, and infrasound to investigate the eruption of Bogoslof volcano, Alaska. Geophys Res Lett 45:6918–6925. https://doi.org/10.1029/2018gl078457

    Article  Google Scholar 

  82. Williams ER (1995) Comment on “thunderstorm electrification laboratory experiments and charging mechanisms” by C.P.R. Saunders. J Geophys Res 100:1503–1505

    Article  Google Scholar 

  83. Williams ER, McNutt SR (2005) Total water contents in volcanic eruption clouds and implications for electrification and lightning. In: Pontikis C (ed) Recent Progress in lightning physics. Research signpost, Thiruvananthapuram, Trivandrum pp 81–94

  84. Williams E, Nathou N, Hicks E, Pontikis C, Russell B, Miller M, Bartholomew MJ (2009) The electrification of dust-lofting gust fronts (‘haboobs’) in the Sahel. Atmos Res 91:292–298. https://doi.org/10.1016/j.atmosres.2008.05.017

    Article  Google Scholar 

  85. Woodhouse MJ, Behnke SA (2014) Charge structure in volcanic plumes: a comparison of plume properties predicted by an integral plume model to observations of volcanic lightning during the 2010 eruption of Eyjafjallajökull, Iceland. Bull Volcanol 76:1–21. https://doi.org/10.1007/s00445-014-0828-4

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the World Wide Lightning Location Network (http://wwlln.net), a collaboration among over 50 universities and institutions, for providing WWLLN lightning location data. We also thank Vaisala, Inc. for providing the GLD360 data used in this study. Michael Pavolonis (NOAA/NESDIS) is acknowledged for plume height retrievals using Himawari-8. Two anonymous reviewers are thanked for their thorough comments, which greatly improved the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Data used in this study are provided in the references, tables, and Supplementary Material.

Funding

Funding for the study was provided by the USGS Volcano Hazards Program. RHH also received funding from NASA grant 80NSSC19K0407.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexa R. Van Eaton.

Additional information

This paper constitutes part of a topical collection: The 2016-17 shallow submarine eruption of Bogoslof volcano, Alaska

Editorial responsibility: K. Wallace; Special Issue Editor N. Fournier

Electronic supplementary material

ESM 1

(DOCX 317 kb).

ESM 2

(XLSX 832 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Eaton, A.R., Schneider, D.J., Smith, C.M. et al. Did ice-charging generate volcanic lightning during the 2016–2017 eruption of Bogoslof volcano, Alaska?. Bull Volcanol 82, 24 (2020). https://doi.org/10.1007/s00445-019-1350-5

Download citation

Keywords

  • Volcanic lightning
  • Volcanic ash
  • Surtseyan
  • Phreatomagmatic
  • Magma-water interaction