Bulletin of Volcanology

, 81:52 | Cite as

Growth-zoned gypsum stalactite from the Kawah Ijen volcanic lake, Indonesia, records a >40-year record of volcanic activity

  • Sri Budhi UtamiEmail author
  • Vincent J. van Hinsberg
  • Bassam Ghaleb
  • Daniele L. Pinti
Research Article


Volcanic crater lakes represent both a significant hazard and an opportunity to monitor the activity of their host volcano. Unfortunately monitoring efforts, especially of lake water composition, are commonly limited by the lack of a historical record. Here we report the results of a study on the Kawah Ijen crater lake in eastern Java, Indonesia that uses growth-zoned gypsum precipitated from lake water seepage as a proxy record of lake water chemistry. Absolute ages for gypsum growth zones were determined from 210Pb radionuclide dating with a newly developed Ar-Kr-Xe correction for variations in the volcanic flux. The resulting 40-year time series of gypsum composition shows that periods of unrest are recorded by large compositional variance, whereas quiescence is characterized by low concentrations and low variance. Gypsum associated with the 1817 phreato-magmatic eruption of Kawah Ijen is similar in most elements, but it has markedly higher ratios of Cu over Sb, As and Tl, which is interpreted to represent a volcanic gas signal. These results show that gypsum holds great promise to provide the missing historical record of lake chemistry and unrest at Kawah Ijen volcano, and this approach can be extended to other volcanoes hosting crater lakes where gypsum is present.


Gypsum 210Pb dating Noble gases Hazard monitoring Volcanic lakes Kawah Ijen Historical records 



We thank Arisai Valadez and Anna Jung for assistance with noble gas and chemical analyses, respectively, and Kim Berlo and participants of the Cities on Volcanoes 8 Wet Volcanoes Workshop for fruitful discussions on the Ijen volcanic system. A McGill University Graduate Mobility Award, Mineralogical Association of Canada Travel Grant, and Cities on Volcanoes 8 Travel Grant to SBU financially supported the fieldwork at Kawah Ijen. VvH and DLP acknowledge financial support from Canada’s National Science and Engineering Research Council (NSERC) through its Discovery Grant programme and le Fonds Québecois de la Récherche sur la Nature et les Technologies (FQRNT). We thank Don Porcelli, Pierre Delmelle and two anonymous reviewers for their insightful comments and detailed suggestions.

Supplementary material

445_2019_1314_MOESM1_ESM.pdf (1.6 mb)
ESM 1 Scatter plots of Sr/Na vs. Sr and Nd/Mn vs. Nd. showing a lack of correlation between these variables. The y-axes contain a break with a change to the scale. (PDF 1647 kb)
445_2019_1314_MOESM2_ESM.pdf (1.4 mb)
ESM 2a Sr-normalized trace element timeseries for selected elements in the gypsum stalactite (circles) and the 1817 gypsum cement (grey triangle). Ages are not extrapolated beyond the oldest dated growth zone. (PDF 1478 kb)
445_2019_1314_MOESM3_ESM.pdf (1.4 mb)
ESM 2b (PDF 1466 kb)
445_2019_1314_MOESM4_ESM.pdf (737 kb)
ESM 2c (PDF 737 kb)
445_2019_1314_MOESM5_ESM.pdf (441 kb)
ESM 3 (PDF 441 kb)
445_2019_1314_MOESM6_ESM.pdf (1.1 mb)
ESM 4 Backscattered electron images (a-d,g) and EDS element maps (e,f,h,i) of the core, mantle and rim zones of the gypsum stalactite. Inclusions of barite, syngenite, amorphous silica, a Ca-SO4-F phase and variably altered rock fragments are found in all zones, but are more abundant in the mantle zone. Inclusion size is generally < 5μm. Barite is particularly abundant in the rim (c). Chlorides represent surface contamination. (PDF 1126 kb)
445_2019_1314_MOESM7_ESM.xlsx (99 kb)
ESM 5 Trace element concentrations in the gypsum stalactite transect. All values are in mg/kg except for Hg, which is in mg/kg per mg/kg in NIST SRM 610 given that a reference concentration for Hg in this standard is not available. n.d. = not detected. (XLSX 98 kb)


  1. Ali AA, Ghaleb B, Garneau M, Asnong H, Loisel L (2008) Recent peat accumulation rates in minerotrophic peatlands of the Bay James region, Eastern Canada, inferred by 210Pb and 137Cs radiometric techniques. Appl Radiat Isot 66:1350–1358. CrossRefGoogle Scholar
  2. Allard P, Carbonnelle J, Dajlevic D, Le Bronec J, Morel P, Robe MC, Maurenas JM, Faivre-Pierret R, Martin D, Sabroux JC, Zettwoog P (1991) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351(6325):387CrossRefGoogle Scholar
  3. Bani P, Oppenheimer C, Varekamp JC, Quiniou T, Lardy M, Carn S (2009) Remarkable geochemical changes and degassing at Voui crater lake, Ambae volcano, Vanuatu. J Volcanol Geotherm Res 188:347–357. CrossRefGoogle Scholar
  4. Baubron JC, Allard P, Sabroux JC, Tedesco D, Toutaln JP (1991) Soil gas emanations as precursory indicators of volcanic eruptions. J Geol Soc 148(3):571–576CrossRefGoogle Scholar
  5. Berlo K, Turner S (2010) 210Pb–226Ra disequilibria in volcanic rocks. Earth Planet Sci Lett 296(3–4):155–164. CrossRefGoogle Scholar
  6. Berlo K, van Hinsberg VJ, Vigouroux N, Gagnon JE, Williams-Jones AE (2014) Sulfide breakdown controls metal signature in volcanic gas at Kawah Ijen volcano, Indonesia. Chem Geol 371:115–127. CrossRefGoogle Scholar
  7. Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397. CrossRefGoogle Scholar
  8. Bosch C (1858) Uitbarstingen der vulkanen Idjin en Raun (Banjoewangi). Tijdschrift voor Indische Taal-, Land- en Volkenkunde 7:265–286Google Scholar
  9. Caudron C, Mauri G, Williams-Jones G, Lecocq T, Syahbana DK, de Plaen R, Peiffer L, Bernard A, Saracco G (2015a) New insights into the Kawah Ijen hydrothermal system from geophysical data. Geol Soc London Spec Publ 437:57–72. CrossRefGoogle Scholar
  10. Caudron C, Syahbana DK, Lecocq T, van Hinsberg V, McCausland W, Triantafyllou A, Camelbeeck T, Bernard A, Surono (2015b) Kawah Ijen volcanic activity: a review. Bull Volcanol 77:16. CrossRefGoogle Scholar
  11. Caudron C, Mauri G, Williams-Jones G, Lecocq T, Syahbana DK, De Plaen R, Peiffer L, Bernard A, Saracco G (2017) New insights into the Kawah Ijen hydrothermal system from geophysical data. Geol Soc Lond Spec Publ 437(1):57–72. CrossRefGoogle Scholar
  12. Christenson BW (2000) Geochemistry of fluids associated with the 1995–1996 eruption of Mt. Ruapehu, New Zealand: signatures and processes in the magmatic-hydrothermal system. J Volcanol Geotherm Res 97:1–30. CrossRefGoogle Scholar
  13. Christenson BW, Wood CP (1993) Evolution of a vent-hosted hydrothermal system beneath Ruapehu crater lake, New-Zealand. Bull Volcanol 55:547–565. CrossRefGoogle Scholar
  14. Christenson, B.W., Reyes, A.G., Young, R., Moebis, A., Sherburn, S., Cole-Baker, J. and Britten, K., 2010. Cyclic processes and factors leading to phreatic eruption events: Insights from the 25 September 2007 eruption through Ruapehu Crater Lake, New Zealand. Journal of Volcanology and Geothermal Research, 191(1-2), pp.15-32.CrossRefGoogle Scholar
  15. Christenson B, Németh K, Rouwet D, Tassi F, Vandemeulebrouck J, Varekamp JC (2015) Volcanic lakes. In: Volcanic lakes. Springer, Berlin, Heidelberg, pp 1–20Google Scholar
  16. Davidson JP, Tepley FJ (1997) Recharge in volcanic systems: evidence from isotope profiles of phenocrysts. Science 275:826–829. CrossRefGoogle Scholar
  17. Delmelle P, Bernard A (2000) Downstream composition changes of acidic volcanic waters discharged into the Banyupahit stream, Ijen caldera, Indonesia. J Volcanol Geotherm Res 97:55–75. CrossRefGoogle Scholar
  18. Delmelle P, Bernard A (1994) Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia. Geochim Cosmochim Acta 58:2445–2460. CrossRefGoogle Scholar
  19. Delmelle P, Bernard A, Kusakabe M, Fischer TP (2000) Geochemistry of the magmatic–hydrothermal system of Kawah Ijen volcano, East Java, Indonesia. J Volcanol Geotherm Res 97:31–53. CrossRefGoogle Scholar
  20. Delmelle, P., Henley, R.W., Opfergelt, S. and Detienne, M., 2015. Summit acid crater lakes and flank instability in composite volcanoes. In Volcanic lakes (pp. 289-305). Springer, Berlin, Heidelberg.Google Scholar
  21. Gamble JA, Wood CP, Price RC, Smith IEM, Stewart RB, Waight T (1999) A fifty year perspective of magmatic evolution on Ruapehu Volcano, New Zealand: verification of open system behaviour in an arc volcano. Earth Planet Sci Lett 170:301–314. CrossRefGoogle Scholar
  22. Gunawan H, Caudron C, Pallister J, Primulyana S, Christenson B, McCausland W, van Hinsberg V, Lewicki J, Rouwet D, Kelly P, Kern C, Werner C, Johnson JB, Utami SB, Syahbana DK, Saing U, Suparjan, Purwanto BH, Sealing C, Martinez Cruz M, Maryanto S, Bani P, Laurin A, Schmid A, Bradley K, Nandaka IGMA, Hendrasto M (2016) New insights into Kawah Ijen's volcanic system from the wet volcano workshop experiment. Geol Soc Lond Spec Publ 437:35–56. CrossRefGoogle Scholar
  23. Handley HK, Macpherson CG, Davidson JP, Berlo K, Lowry D (2007) Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen Volcanic Complex. J Petrol 48:1155–1183. CrossRefGoogle Scholar
  24. Hill C, Forti P (1997) Cave minerals of the world, 2nd edn. National Speleological Society 463 ppGoogle Scholar
  25. Holden NE (1990) Total half-lives for selected nuclides. Pure Appl Chem 62(5):941–958. CrossRefGoogle Scholar
  26. Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29:333–338. CrossRefGoogle Scholar
  27. Kemmerling G (1921) De geologie en geomorphologie van den Idjen en analyse van merkwaardige watersoorten op het Idjen hooglandGoogle Scholar
  28. Kempter KA, Rowe GL (2000) Leakage of Active Crater lake brine through the north flank at Rincón de la Vieja volcano, northwest Costa Rica, and implications for crater collapse. J Volcanol Geotherm Res 97:143–159. CrossRefGoogle Scholar
  29. Kent AJ, Darr C, Koleszar AM, Salisbury MJ, Cooper KM (2010) Preferential eruption of andesitic magmas through recharge filtering. Nat Geosci 3:631–636. CrossRefGoogle Scholar
  30. Lombardi S, Reimer GM (1990) Radon and helium in soil gases in the Phlegraean fields (central Italy). Geophys Res Lett 17(6):849–852CrossRefGoogle Scholar
  31. Manville V (2015) Volcano-hydrologic hazards from volcanic lakes. In: Volcanic lakes. Springer, Berlin, Heidelberg, pp 21–71CrossRefGoogle Scholar
  32. Martinez M, Fernandez E, Valdes J, Barboza V, Van der Laat R, Duarte E, Malavassi E, Sandoval L, Barquero J, Marino T (2000) Chemical evolution and volcanic activity of the active crater lake of Poas volcano, Costa Rica, 1993–1997. J Volcanol Geotherm Res 97:127–141. CrossRefGoogle Scholar
  33. Mastin L, Witter J (2000) The hazards of eruptions through lakes and seawater. J Volcanol Geotherm Res 97:195–214. CrossRefGoogle Scholar
  34. McDowell-Boyer LM, Hunt JR, Sitar N (1986) Particle transport through porous media. Water Resour Res 22(13):1901–1921CrossRefGoogle Scholar
  35. Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Lejeune AM, Brewer TS, MacDonald R, Black S, Young S (1998) The role of magma mixing in triggering the current eruption at the Soufriere Hills volcano, Montserrat, West Indies. Geophys Res Lett 25(18):3433–3436CrossRefGoogle Scholar
  36. Oudgast (i.e. Anonymous) (1820) Mengelingen. Bataviasche Courant 7Google Scholar
  37. Ozima M (1994) Noble gas state in the mantle. Rev Geophys 32(4):405–426CrossRefGoogle Scholar
  38. Palmer S (2009) Hydrogeochemistry of the upper Banyu Pahit River valley, Kawah Ijen volcano, Indonesia. MSc thesis, McGill University, CanadaGoogle Scholar
  39. Pasternack GB, Varekamp JC (1997) Volcanic lake systematics I. Physical constraints. Bull Volcanol 58:528–538. CrossRefGoogle Scholar
  40. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26(12):2508–2518. CrossRefGoogle Scholar
  41. Pitre F, Pinti DL (2010) Noble gas enrichments in porewater of estuarine sediments and their effect on the estimation of net denitrification rates. Geochim Cosmochim Acta 74:531–539. CrossRefGoogle Scholar
  42. Reagan M, Turner S, Handley H, Turner M, Beier C, Caulfield J, Peate D (2017) 210 Pb-226 Ra disequilibria in young gas-laden magmas. Sci Rep 7:45186. CrossRefGoogle Scholar
  43. Roulleau E, Pinti DL, Stevenson RK, Takahata N, Sano Y, Pitre F (2012) N, Ar and Pb isotopic co-variations in magmatic minerals: discriminating fractionation processes from magmatic sources in Monteregian Hills, Québec, Canada. Chem Geol 326–327:123–131. CrossRefGoogle Scholar
  44. Rouwet D, Tassi F, Mora-Amador R, Sandri L, Chiarini V (2014) Past, present and future of volcanic lake monitoring. J Volcanol Geotherm Res 272:78–97CrossRefGoogle Scholar
  45. Sitorus K (1990) Volcanic stratigraphy and geochemistry of the Idjen Caldera Complex, East-Java, Indonesia. PhD thesis. Victoria University of WellingtonGoogle Scholar
  46. Sumarti S (1998) Volcanic pollutants in hyperacid river water discharged from Ijen crater lake, East Java, Indonesia. MSc thesis. Utrecht UniversityGoogle Scholar
  47. Takano B, Suzuki K, Sugimori K, Ohba T, Fazlullin SM, Bernard A, Sumarti S, Sukhyar R, Hirabayashi M (2004) Bathymetric and geochemical investigation of Kawah Ijen crater lake, East Java, Indonesia. J Volcanol Geotherm Res 135(4):299–329. CrossRefGoogle Scholar
  48. Taran Y, Rouwet D (2008) Estimating thermal inflow to El Chichón crater lake using the energy-budget, chemical and isotope balance approaches. J Volcanol Geotherm Res 175:472–481. CrossRefGoogle Scholar
  49. Tepley FJ III, Davidson JP, Tilling RI, Arth JG (2000) Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon Volcano, Mexico. J Petrol 41:472–481. CrossRefGoogle Scholar
  50. Trunk L, Bernard A (2008) Investigating crater lake warming using ASTER thermal imagery: case studies at Ruapehu, Poás, Kawah Ijen, and Copahué volcanoes. J Volcanol Geotherm Res 178:259–270. CrossRefGoogle Scholar
  51. Turner S, Black S, Berlo K (2004) 210 Pb–226 Ra and 228 Ra–232 Th systematics in young arc lavas: implications for magma degassing and ascent rates. Earth Planet Sci Lett 227(1):1–16. CrossRefGoogle Scholar
  52. van Hinsberg V (2001) Water-rock interaction and element fluxes in the Kawah Ijen hyperacid crater lake and the Banyu Pait river, East Java, Indonesia. Unpublished M.Sc. thesis, Utrecht University, the Netherlands, 306 ppGoogle Scholar
  53. van Hinsberg V, Berlo K, Sumarti S, van Bergen M, Williams-Jones A (2010a) Extreme alteration by hyperacidic brines at Kawah Ijen volcano, East Java, Indonesia: II Metasomatic imprint and element fluxes. J Volcanol Geotherm Res 196:169–184. CrossRefGoogle Scholar
  54. van Hinsberg V, Berlo K, van Bergen M, Williams-Jones A (2010b) Extreme alteration by hyperacidic brines at Kawah ben volcano, East Java, Indonesia: I textural and mineralogical imprint. J Volcanol Geotherm Res 198:253–263. CrossRefGoogle Scholar
  55. van Hinsberg V, Vigouroux N, Palmer S, Berlo K, Mauri G, Williams-Jones A, McKenzie JM, Williams-Jones G, Fischer TP (2015) Element flux to the environment of the passively degassing crater lake-hosting Kawah Ijen volcano, Indonesia, and implications for estimates of the global volcanic flux. Geol Soc Lond Spec Publ 437:9–34. CrossRefGoogle Scholar
  56. van Hinsberg VJ, Migdisov AA, Williams-Jones AE (2010c) Reading the mineral record of fluid composition from element partitioning. Geology 38:847–850. CrossRefGoogle Scholar
  57. Varekamp JC, Kreulen R (2000) The stable isotope geochemistry of volcanic lakes, with examples from Indonesia. J Volcanol Geotherm Res 97:309–327. CrossRefGoogle Scholar
  58. Varekamp JC, Ouimette AP, Herman SW, Bermudez A, Delpino D (2001) Hydrothermal element fluxes from Copahue, Argentina: a “beehive” volcano in turmoil. Geology 29:1059–1062.<1059:HEFFCA>2.0.CO;2 CrossRefGoogle Scholar
  59. Varekamp JC, Pasternack GB, Rowe GL (2000) Volcanic lake systematics II. Chemical constraints. J Volcanol Geotherm Res 97:161–179. CrossRefGoogle Scholar
  60. Varekamp, J.C., 2015. The chemical composition and evolution of volcanic lakes. In volcanic lakes (pp. 93-123). Springer, Berlin, Heidelberg.Google Scholar

Copyright information

© International Association of Volcanology & Chemistry of the Earth's Interior 2019

Authors and Affiliations

  1. 1.GEOTOP & Department of Earth and Planetary SciencesMcGill UniversityMontréalCanada
  2. 2.Asian School of the EnvironmentNanyang Technological UniversitySingaporeSingapore
  3. 3.GEOTOP & Département des sciences de la Terre et de l’atmosphèreUniversité de Québec à MontréalMontréalCanada

Personalised recommendations