Skip to main content
Log in

A new method to identify the source vent location of tephra fall deposits: development, testing, and application to key Quaternary eruptions of Western North America

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

A Correction to this article was published on 13 September 2019

This article has been updated

Abstract

A new method to identify the source vent location of tephra fall deposits based on thickness or maximum clast size measurements is presented in this work. It couples a first-order gradient descent method with either one of two commonly used semi-empirical models of tephra thickness distribution. The method is applied to three tephra thickness and one maximum clast size datasets of the North Mono and Fogo A tephra deposits. Randomly selected and localized subsets of these datasets are used as input to evaluate its performance. The results suggest the utility of the method and show that estimating the dispersal axis is a more robust way to constrain the vent location compared with directly estimating the vent coordinates given sparse observations. Local change in dispersal direction can be detected given localized observations. Bootstrap aggregating and visualizing the surface of the cost function are used to analyze epistemic uncertainty for the method. Our discussion focuses on how different features of tephra deposits and technical aspects of the method would affect the performance of the method. Suggestions on how to use the method given limited observations are listed. One subset of the North Mono Bed 1 thickness dataset and thickness datasets of the Trego Hot Springs and Rockland tephras are used as case studies. The method is then applied to the well-correlated tephra sub-units within the Wilson Creek Formation to estimate their vent location and volume. The simplicity and flexibility of the method make it a potentially useful tool for analyzing tephra fall deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Change history

  • 13 September 2019

    The original version of this article unfortunately contained a mistake in its pdf version. Due to a formatting problem, the ‘tilde’ which is supposed to stay on top of ‘x’ or ‘y’ is in the middle, overlapping the variables. The online version of this article does not have this problem.

References

  • Adams KD (2010) Lake levels and sedimentary environments during deposition of the Trego Hot Springs and Wono tephras in the lake Lahontan basin, Nevada, USA. Quat Res 73(1):118–129

    Google Scholar 

  • Alloway B, Westgate J, Sandhu A, Bright R (1992) Isothermal plateau fission-track age and revised distribution of the widespread mid-Pleistocene Rockland tephra in west-central United States. Geophys Res Lett 19(6):569–572

    Google Scholar 

  • Bailey RA (2004) Eruptive history and chemical evolution of the precaldera and postcaldera basalt-dacite sequences, Long Valley, California: implications for magma sources, current seismic unrest, and future volcanism. Number 1692. US Department of the Interior, US Geological Survey

  • Benson LV, Smoot JP, Kashgarian M, Sarna-Wojcicki A, Burdett JW (1997) Radiocarbon ages and environments of deposition of the Wono and Trego Hot Springs tephra layers in the Pyramid Lake subbasin, Nevada. Quat Res 47(3):251–260

    Google Scholar 

  • Benson L, Liddicoat J, Smoot J, Sarna-Wojcicki A, Negrini R, Lund S (2003) Age of the Mono Lake excursion and associated tephra. Quat Sci Rev 22(2):135–140

    Google Scholar 

  • Benson LV, Smoot JP, Lund SP, Mensing SA, Foit F Jr, Rye RO (2013) Insights from a synthesis of old and new climate-proxy data from the Pyramid and Winnemucca lake basins for the period 48 to 11.5 cal ka. Quat Int 310:62–82

    Google Scholar 

  • Bevilacqua A, Bursik M, Patra A, Pitman EB, Till R (2017) Bayesian construction of a long-term vent opening probability map in the Long Valley volcanic region (CA, USA). Stat Volcanol 3(1):1–36

    Google Scholar 

  • Bevilacqua A, Bursik M, Patra A, Bruce Pitman E, Yang Q, Sangani R, Kobs-Nawotniak S (2018) Late Quaternary eruption record and probability of future volcanic eruptions in the Long Valley volcanic region (CA, USA). J Geophys Res Solid Earth 123(7):5466–5494

    Google Scholar 

  • Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73(1):73–90

    Google Scholar 

  • Biasse S, Bagheri G, Aeberhard W, Bonadonna C (2014) TError: towards a better quantification of the uncertainty propagated during the characterization of tephra deposits. Stat Volcanol 1(2):1–27

    Google Scholar 

  • Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology, pages G32769–1

  • Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res Solid Earth 108(B7)

  • Bonadonna C, Ernst G, Sparks R (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81(3):173–187

    Google Scholar 

  • Bonadonna C, Mayberry G, Calder E, Sparks R, Choux C, Jackson P, Lejeune A, Loughlin S, Norton G, Rose W et al (2002) Tephra fallout in the eruption of Soufrière Hills Volcano, Montserrat. Geol Soc Lond Mem 21(1):483–516

    Google Scholar 

  • Bonadonna C, Connor CB, Houghton B, Connor L, Byrne M, Laing A, Hincks T (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J Geophys Res Solid Earth 110(B3)

  • Bonadonna C, Biass S, Costa A (2015) Physical characterization of explosive volcanic eruptions based on tephra deposits: propagation of uncertainties and sensitivity analysis. J Volcanol Geotherm Res 296:80–100

    Google Scholar 

  • Bonasia R, Macedonio G, Costa A, Mele D, Sulpizio R (2010) Numerical inversion and analysis of tephra fallout deposits from the 472 AD sub-Plinian eruption at Vesuvius (Italy) through a new best-fit procedure. J Volcanol Geotherm Res 189(3):238–246

    Google Scholar 

  • Bowers R (2009) Quaternary stratigraphy, geomorphology, and hydrologic history of pluvial Lake Madeline, Lassen County, northeastern California. PhD thesis, Humboldt State University

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Google Scholar 

  • Burden R, Phillips J, Hincks T (2011) Estimating volcanic plume heights from depositional clast size. J Geophys Res Solid Earth 116(B11)

    Google Scholar 

  • Burden R, Chen L, Phillips J (2013) A statistical method for determining the volume of volcanic fall deposits. Bull Volcanol 75(6):707

    Google Scholar 

  • Bursik M (1993) Subplinian eruption mechanisms inferred from volatile and clast dispersal data. J Volcanol Geotherm Res 57(1):57–70

    Google Scholar 

  • Bursik M (2001) Effect of wind on the rise height of volcanic plumes. Geophys Res Lett 28(18):3621–3624

    Google Scholar 

  • Bursik M, Rogova G (2006) Use of neural networks and decision fusion for lithostratigraphic correlation with sparse data, Mono-Inyo Craters, California. Comput Geosci 32(10):1564–1572

    Google Scholar 

  • Bursik M, Sieh K (1989) Range front faulting and volcanism in the Mono Basin, eastern California. J Geophys Res Solid Earth 94(B11):15587–15609

    Google Scholar 

  • Bursik M, Sieh K (2013) Digital database of the Holocene tephras of the Mono-Inyo Craters, California. Technical report, US Geological Survey

  • Bursik M, Carey S, Sparks R (1992a) A gravity current model for the May 18, 1980 Mount St. Helens plume. Geophys Res Lett 19(16):1663–1666

    Google Scholar 

  • Bursik M, Sparks R, Gilbert J, Carey S (1992b) Sedimentation of tephra by volcanic plumes: I. theory and its comparison with a study of the Fogo A plinian deposit, São Miguel (Azores). Bull Volcanol 54(4):329–344

    Google Scholar 

  • Bursik M, Sieh K, Meltzner A (2014) Deposits of the most recent eruption in the Southern Mono Craters, California: description, interpretation and implications for regional marker tephras. J Volcanol Geotherm Res 275:114–131

    Google Scholar 

  • Carey S, Sparks R (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48(2–3):109–125

    Google Scholar 

  • Clynne M (1984) Stratigraphy and major element geochemistry of the Lassen volcanic center, California. Technical report, Geological Survey, Menlo Park, CA (USA)

  • Clynne MA, Muffler LJP (2010) Geologic map of Lassen Volcanic National Park and vicinity, California. US Department of the Interior, US Geological Survey

  • Connor L, Connor CB (2006) Inversion is the key to dispersion: understanding eruption dynamics by inverting tephra fallout. Statistics in volcanology. Geological Society, London, pp 231–242

    Google Scholar 

  • Costa A, Folch A, Macedonio G (2013) Density-driven transport in the umbrella region of volcanic clouds: implications for tephra dispersion models. Geophys Res Lett 40(18):4823–4827

    Google Scholar 

  • Csanady GT (1973) The fluctuation problem in turbulent diffusion. In: Turbulent diffusion in the environment. Springer, pp. 10–26

  • Davis JO (1978) Quaternary tephrochronology of the Lake Lahontan area, Nevada and California. Doctoral dissertation, University of Nevada

  • Engwell S, Sparks R, Aspinall W (2013) Quantifying uncertainties in the measurement of tephra fall thickness. J Appl Volcanol 2(1):5

    Google Scholar 

  • Engwell S, Aspinall W, Sparks R (2015) An objective method for the production of isopach maps and implications for the estimation of tephra deposit volumes and their uncertainties. Bull Volcanol 77(7):1–18

    Google Scholar 

  • Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54(2):156–167

    Google Scholar 

  • Gonzalez-Mellado A, Cruz-Reyna S (2010) A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios. Nat Hazards Earth Syst Sci 10(11):2241–2257

    Google Scholar 

  • Green RM, Bebbington MS, Cronin SJ, Jones G (2014) Automated statistical matching of multiple tephra records exemplified using five long maar sequences younger than 75ka, Auckland, New Zealand. Quat Res 82(2):405–419

    Google Scholar 

  • Green RM, Bebbington MS, Jones G, Cronin SJ, Turner MB (2016) Estimation of tephra volumes from sparse and incompletely observed deposit thicknesses. Bull Volcanol 78(4):1–18

    Google Scholar 

  • Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Volcanol Geotherm Res 136(3):169–198

    Google Scholar 

  • Kawabata E, Bebbington MS, Cronin SJ, Wang T (2013) Modeling thickness variability in tephra deposition. Bull Volcanol 75(8):1–14

    Google Scholar 

  • Kawabata E, Cronin S, Bebbington M, Moufti M, El-Masry N, Wang T (2015) Identifying multiple eruption phases from a compound tephra blanket: an example of the AD 1256 AI-Madinah eruption, Saudi Arabia. Bull Volcanol 77(1):1–13

    Google Scholar 

  • Kawabata E, Bebbington MS, Cronin SJ, Wang T (2016) Optimal likelihood-based matching of volcanic sources and deposits in the Auckland volcanic field. J Volcanol Geotherm Res 323:194–208

    Google Scholar 

  • King M, Busacca AJ, Foit FF, Kemp RA (2001) Identification of disseminated Trego Hot Springs tephra in the Palouse, Washington State. Quat Res 56(2):165–169

    Google Scholar 

  • Klawonn M, Wolfe CJ, Frazer LN, Houghton BF (2012) Novel inversion approach to constrain plume sedimentation from tephra deposit data: application to the 17 June 1996 eruption of Ruapehu volcano, New Zealand. J Geophys Res Solid Earth 117(B5)

    Google Scholar 

  • Klawonn M, Houghton BF, Swanson DA, Fagents SA, Wessel P, Wolfe CJ (2014) Constraining explosive volcanism: subjective choices during estimates of eruption magnitude. Bull Volcanol 76(2):793

    Google Scholar 

  • Koyaguchi T (1994) Grain-size variation of tephra derived from volcanic umbrella clouds. Bull Volcanol 56(1):1–9

    Google Scholar 

  • Lajoie KR (1968) Late Quaternary stratigraphy and geologic history of Mono Basin, eastern California. University of California

  • Lanphere MA, Champion DE, Clynne MA, Patrick Muffler L (1999) Revised age of the Rockland tephra, northern California: implications for climate and stratigraphic reconstructions in the western United States. Geology 27(2):135–138

    Google Scholar 

  • Lanphere MA, Champion DE, Christiansen RL, Izett GA, Obradovich JD (2002) Revised ages for tuffs of the Yellowstone Plateau volcanic field: assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event. Geol Soc Am Bull 114(5):559–568

    Google Scholar 

  • Lanphere M, Champion D, Clynne M, Lowenstern J, Sarna-Wojcicki A, Wooden J (2004) Age of the Rockland tephra, western USA. Quat Res 62(1):94–104

    Google Scholar 

  • Madsen DB, Sarna-Wojcicki AM, Thompson RS (2002) A late Pleistocene tephra layer in the southern Great Basin and Colorado Plateau derived from Mono Craters, California. Quat Res 57(3):382–390

    Google Scholar 

  • Marcaida M (2015) Resolving the timing of late Pleistocene dome emplacement at Mono Craters, California, from 238U–230Th and 40Ar/39Ar dating. San Jose State University

  • Marcaida M, Mangan MT, Vazquez JA, Bursik M, Lidzbarski MI (2014) Geochemical fingerprinting of Wilson Creek formation tephra layers (Mono Basin, California) using titanomagnetite compositions. J Volcanol Geotherm Res 273:1–14

    Google Scholar 

  • Marcaida M, Vazquez JA, Stelten ME, Miller JS (2019) Constraining the Early Eruptive History of the Mono Craters Rhyolites, California, Based on U‐ Th Isochron Dating of Their Explosive and Effusive Products. Geochemistry, Geophysics, Geosystems 20 (3):1539–1556

  • Miller CD (1985) Holocene eruptions at the Inyo volcanic chain, California: implications for possible eruptions in Long Valley caldera. Geology 13(1):14–17

    Google Scholar 

  • Moore RB (1990) Volcanic geology and eruption frequency, São Miguel, Azores. Bull Volcanol 52(8):602–614

    Google Scholar 

  • Nathenson M, Fierstein J (2014) Spread sheet to calculate tephra volume for exponential thinning. https://vhub.org/resources/3716

  • Nawotniak SK, Bursik M (2010) Subplinian fall deposits of Inyo Craters, CA. J Volcanol Geotherm Res 198(3):433–446

    Google Scholar 

  • Negrini RM, Verosub KL, Davis JO (1988) The middle to late Pleistocene geomagnetic field recorded in fine-grained sediments from Summer Lake, Oregon, and Double Hot Springs, Nevada, USA. Earth Planet Sci Lett 87(1–2):173–192

    Google Scholar 

  • Pouget S, Bursik M, Cortes JA, Hayward C (2014a) Use of principal component analysis for identification of Rockland and Trego Hot Springs tephras in the Hat Creek Graben, northeastern California, USA. Quat Res 81(1):125–137

    Google Scholar 

  • Pouget S, Bursik M, Rogova G (2014b) Tephra redeposition and mixing in a late-glacial hillside basin determined by fusion of clustering analyses of glass-shard geochemistry. J Quat Sci 29(8):789–802

    Google Scholar 

  • Pouget S, Bursik M, Singla P, Singh T (2016) Sensitivity analysis of a one-dimensional model of a volcanic plume with particle fallout and collapse behavior. J Volcanol Geotherm Res 326:43–53

    Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51(1):1–15

    Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rhoades DA, Dowrick D, Wilson C (2002) Volcanic hazard in New Zealand: scaling and attenuation relations for tephra fall deposits from Taupo Volcano. Nat Hazards 26(2):147–174

    Google Scholar 

  • Rieck HJ, Sarna-Wojcicki AM, Meyer CE, Adam DP (1992) Magnetostratigraphy and tephrochronology of an upper Pliocene to Holocene record in lake sediments at Tulelake, northern California. Geol Soc Am Bull 104(4):409–428

    Google Scholar 

  • Rogova GL, Bursik MI, Hanson-Hedgecock S (2007) Interpreting the pattern of volcano eruptions: intelligent system for tephra layer correlation. In: Information fusion, 2007 10th international conference on, pages 1–7. IEEE

  • Rogova GL, Bursik MI, Pouget S (2015) Learning under uncertainty for interpreting the pattern of volcanic eruptions. In Information Fusion (Fusion), 2015 18th International Conference on, pages 375–382. IEEE

  • Sarna-Wojcicki A (2000) Revised age of the Rockland tephra, northern California: implications for climate and stratigraphic reconstructions in the western United States: comment: COMMENT. Geology 28(3):286–286

    Google Scholar 

  • Sarna-Wojcicki AM, Meyer CE, Bowman HR, Hall NT, Russell PC, Woodward MJ, Slate JL (1985) Correlation of the Rockland ash bed, a 400,000-year-old stratigraphic marker in northern California and western Nevada, and implications for middle Pleistocene paleogeography of central California. Quat Res 23(2):236–257

    Google Scholar 

  • Sarna-Wojcicki A, Morrison SD, Meyer C, Hillhouse J (1987) Correlation of upper Cenozoic tephra layers between sediments of the western United States and eastern Pacific Ocean and comparison with biostratigraphic and magnetostratigraphic age data. Geol Soc Am Bull 98(2):207–223

    Google Scholar 

  • Sarna-Wojcicki AM, Davis JO, Morrison R (1991) Quaternary tephrochronology, Quaternary nonglacial geology: Conterminous United States: Boulder, Colorado, Geological Society of America. Geol North Am 2:93–116

    Google Scholar 

  • Schwaiger HF, Denlinger RP, Mastin LG (2012) Ash3d: a finite-volume, conservative numerical model for ash transport and tephra deposition. J Geophys Res Solid Earth 117(B4)

    Google Scholar 

  • Scollo S, Tarantola S, Bonadonna C, Coltelli M, Saltelli A (2008) Sensitivity analysis and uncertainty estimation for tephra dispersal models. J Geophys Res Solid Earth 113(B6)

  • Self S (1983) Large-scale phreatomagmatic silicic volcanism: a case study from New Zealand. J Volcanol Geotherm Res 17(1–4):433–469

    Google Scholar 

  • Sieh K, Bursik M (1986) Most recent eruption of the Mono Craters, eastern central California. J Geophys Res Solid Earth 91(B12):12539–12571

    Google Scholar 

  • Sigl M, Winstrup M, McConnell J, Welten K, Plunkett G, Ludlow F, Buntgen U, Caffee M, Chellman N, Dahl-Jensen D et al (2015) Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523(7562):543–549

    Google Scholar 

  • Sparks R, Carey S, Sigurdsson H (1991) Sedimentation from gravity currents generated by turbulent plumes. Sedimentology 38(5):839–856

    Google Scholar 

  • Sparks R, Bursik M, Ablay G, Thomas R, Carey S (1992) Sedimentation of tephra by volcanic plumes. Part 2: controls on thickness and grain-size variations of tephra fall deposits. Bull Volcanol 54(8):685–695

    Google Scholar 

  • Suzuki T (1983) A theoretical model for dispersion of tephra. Arc Volcanism: Physics and Tectonics 95:113

    Google Scholar 

  • Turner MB, Bebbington MS, Cronin SJ, Stewart RB (2009) Merging eruption datasets: building an integrated Holocene eruptive record for Mt Taranaki, New Zealand. Bull Volcanol 71(8):903–918

    Google Scholar 

  • Volentik AC, Bonadonna C, Connor CB, Connor LJ, Rosi M (2010) Modeling tephra dispersal in absence of wind: insights from the climactic phase of the 2450 BP Plinian eruption of Pululagua volcano (Ecuador). J Volcanol Geotherm Res 193(1):117–136

    Google Scholar 

  • Walker G, Croasdale R (1971a) Characteristics of some basaltic pyroclastics. Bull Volcanol 35(2):303–317

    Google Scholar 

  • Walker G, Croasdale R (1971b) Two Plinian-type eruptions in the Azores. J Geol Soc 127(1):17–55

    Google Scholar 

  • White J, Connor C, Connor L, Hasenaka T (2017) Efficient inversion and uncertainty quantification of a tephra fallout model. J Geophys Res Solid Earth 122(1):281–294

    Google Scholar 

  • Wilson CJ, Hildreth W (1997) The Bishop Tuff: new insights from eruptive stratigraphy. J Geol 105(4):407–440

    Google Scholar 

  • Wood SH (1977) Distribution, correlation, and radiocarbon dating of late Holocene tephra, Mono and Inyo craters, eastern California. Geol Soc Am Bull 88(1):89–95

    Google Scholar 

  • Yang Q, Bursik M (2016) A new interpolation method to model thickness, isopachs, extent, and volume of tephra fall deposits. Bull Volcanol 78(10):68

    Google Scholar 

  • Yang Q, Bursik MI, Pitman EB (2018) A new method to identify the vent location of tephra fall deposits based on thickness or maximum clast size measurements (SVL). https://vhub.org/resources/4377

  • Yang Q, Bursik M, Pouget S (2019) Stratigraphic and sedimentologic framework for tephras in the Wilson Creek Formation, Mono Basin, California, USA. J Volcanol Geotherm Res

Download references

Acknowledgments

S. Engwell is thanked for kindly sharing the data. We thank the reviewers for commenting on an earlier version of this manuscript.

Funding

This work was supported by National Science Foundation Hazard SEES grant number 1521855 to G. Valentine, M. Bursik, E.B. Pitman, and A.K. Patra and National Science Foundation Division of Mathematical Sciences grant number 1621853 to A.K. Patra, M. Bursik, and E.B. Pitman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyuan Yang.

Ethics declarations

Disclaimer

The opinions expressed herein are those of the authors alone and do not reflect the opinion of the NSF.

Additional information

Editorial responsibility: J. Dufek

The original version of this article was revised: Due to a formatting problem in the PDF version, the ‘tilde’ which is supposed to stay on top of ‘x’ or ‘y’ is in the middle, overlapping the variables.

Electronic supplementary material

ESM 1

(DOCX 2284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Bursik, M. & Pitman, E.B. A new method to identify the source vent location of tephra fall deposits: development, testing, and application to key Quaternary eruptions of Western North America. Bull Volcanol 81, 51 (2019). https://doi.org/10.1007/s00445-019-1310-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-019-1310-0

Keywords

Navigation