Influence of alteration on the mechanical behaviour and failure mode of andesite: implications for shallow seismicity and volcano monitoring

Abstract

Volcanoes often host hydrothermal systems that alter the host rock. To understand the influence of alteration on mechanical behaviour of edifice-forming rock, we performed a series of triaxial deformation experiments on variably altered andesite from Mt. Ruapehu (New Zealand) under constant effective pressure. Under the imposed conditions, andesite with intermediate argillic alteration deforms in a brittle manner forming fractures. By contrast, andesite with advanced argillic alteration deforms in a ductile manner, with sample failure driven by distributed cataclastic pore collapse. We consider this the result of an increase in porosity and clay content with increasing alteration. Ancillary experiments highlight that the brittle-ductile transition occurs at lower effective pressure (i.e. at shallower depths) in andesites with advanced argillic alteration relative to unaltered andesites of comparable porosity. We conclude that advanced argillic alteration can create an anomalous shallow ductile zone, which has important implications for fluid flow and pre-eruptive seismicity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adelinet M, Fortin J, Schubnel A, Guéguen Y (2013) Deformation modes in an Icelandic basalt: from brittle failure to localized deformation bands. J Volcanol Geotherm Res 255:15–25. https://doi.org/10.1016/j.jvolgeores.2013.01.011

    Article  Google Scholar 

  2. Ahmed AS, Revil A, Byrdina S, Coperey A, Gailler L, Grobbe N, ..., Hogg C (2018) 3D electrical conductivity tomography of volcanoes. J Volcanol Geotherm Res 356:243–263

  3. Apuani T, Corazzato C, Cancelli A, Tibaldi A (2005) Stability of a collapsing volcano (Stromboli, Italy): limit equilibrium analysis and numerical modelling. J Volcanol Geotherm Res 144(1–4):191–210

    Article  Google Scholar 

  4. Baud P, Zhu W, Wong TF (2000) Failure mode and weakening effect of water on sandstone. J Geophys Res 105(B7):16371–16389

    Article  Google Scholar 

  5. Bean CJ, De Barros L, Lokmer I, Métaxian J-P, O’Brien G, Murphy S (2014) Long-period seismicity in the shallow volcanic edifice formed from slow-rupture earthquakes. Nat Geosci 7:71–75

    Article  Google Scholar 

  6. Bergmann J, Friedel P, Kleeberg R (1998) BGMN—a new fundamental parameters based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations. Commission for Powder Diffraction Newsletter, 20:5-8

  7. Brace WF, Paulding B, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71:3939–3953

    Article  Google Scholar 

  8. Brendt ME, Seyfried W, Warren Beck J (1988) Hydrothermal alteration processes at Midocean ridges: experimental and theoretical constraints from Ca and Sr exchange reactions and Sr isotopic ratios. J Geophys Res 93(B5):4573–4583

    Article  Google Scholar 

  9. Bryan CJ, Sherburn S (1999) Seismicity associated with the 1995–1996 eruptions of Ruapehu volcano, New Zealand: narrative and insights into physical processes. J Volcanol Geotherm Res 90:1–18

    Article  Google Scholar 

  10. Byrdina S, Friedel S, Vandemeulebrouck J, Budi-Santoso A, Suryanto W, Rizal MH, Winata E (2017) Geophysical image of the hydrothermal system of Merapi volcano. J Volcanol Geotherm Res 329:30–40

    Article  Google Scholar 

  11. Cassidy M, Manga M, Cashman K, Bachmann O (2018) Controls on explosive-effusive volcanic eruption styles. Nat Commun 9:1–16. https://doi.org/10.1038/s41467-018-05293-3

    Article  Google Scholar 

  12. Christenson BW (2000) Geochemistry of fluids associated with the 1995-1996 eruption of Mt. Ruapehu, New Zealand: signatures and processes in the magmatic-hydrothermal system. J Volcanol Geotherm Res 97(1–4):1–30. https://doi.org/10.1016/S0377-0273(99)00167-5

    Article  Google Scholar 

  13. Cole J (1990) Structural control and origin of volcanism in the Taupo Volcanic Zone, New Zealand. Bull Volcanol 52:445–459. https://doi.org/10.1007/BF00268925

    Article  Google Scholar 

  14. Cooke DR, Hollings P, Wilkinson JJ, Tosdal RM (2014) Geochemistry of porphyry deposits. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, Vol. 13, 2nd edn. Elsevier, Oxford, pp 357–381

    Google Scholar 

  15. Corbett GJ, Leach TM (1998) Southwest Pacific Rim gold–copper systems: structure, alteration and mineralization. Soc Econ Geol Spec Publ 6:1–240

    Google Scholar 

  16. Degruyter W, Bachmann O, Burgisser A, Manga M (2012) The effects of outgassing on the transition between effusive and explosive silicic eruptions. Earth Planet Sci Lett 349-350:161–170. https://doi.org/10.1016/j.epsl.2012.06.056

    Article  Google Scholar 

  17. del Potro R, Hürlimann M (2009) The decrease in the shear strength of volcanic materials with argillic hydrothermal alteration, insights from the summit region of Teide stratovolcano, Tenerife. Eng Geol 104(1–2):135–143

    Article  Google Scholar 

  18. Eggertsson GH, Lavallée Y, Kendrick JE, Markússon SH (2018) Improving fluid flow in geothermal reservoirs by thermal and mechanical stimulation: the case of Krafla volcano, Iceland. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2018.04.008

  19. Farquharson JI, Wadsworth FB (2018) Upscaling permeability in anisotropic volcanic systems. J Volcanol Geotherm Res 364:35–47

    Article  Google Scholar 

  20. Farquharson J, Heap MJ, Varley NR, Baud P, Reuschlé T (2015) Permeability and porosity relationships of edifice-forming andesites: a combined field and laboratory study. J Volcanol Geotherm Res 297:52–68. https://doi.org/10.1016/j.jvolgeores.2015.03.016

    Article  Google Scholar 

  21. Farquharson J, Heap MJ, Baud P, Reuschlé T, Varley NR (2016a) Pore pressure embrittlement in a volcanic edifice. Bull Volcanol 78(1). https://doi.org/10.1007/s00445-015-0997-9

  22. Farquharson JI, Heap MJ, Baud P (2016b) Strain-induced permeability increase in volcanic rock. Geophys Res Lett 43(22):11,603–11,610

    Article  Google Scholar 

  23. Farquharson J, Baud P, Heap MJ (2017) Inelastic compaction and permeability evolution in volcanic rock. Solid Earth 8(2):561–581. https://doi.org/10.5194/se-2016-166

    Article  Google Scholar 

  24. Finn CA, Sisson TW, Deszcz-Pan M (2001) Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier volcano. Nature 409(6820):600–603

    Article  Google Scholar 

  25. Fischer TP, Arehart GB, Sturchio NC, Williams SN (1996) The relationship between fumarole gas composition and eruptive activity at Galeras Volcano, Columbia. Geology 24(6):531–534

    Article  Google Scholar 

  26. Geyer A, Gottsmann J (2010) The influence of mechanical stiffness on caldera deformation and implications for the 1971–1984 Rabaul uplift (Papua New Guinea). Tectonophysics 483(3–4):399–412

    Article  Google Scholar 

  27. Hackett, W. R. (1985). Geology and Petrology of Ruapehu Volcano and Related Vents. (PhD Thesis), Victoria University of Wellington, Wellington, New Zealand

  28. Harnett CE, Benson PM, Rowley P, Fazio M (2018) Fracture and damage localization in volcanic edifice rocks from El Hierro, Stromboli and Tenerife. Sci Rep 8(1):1942

    Article  Google Scholar 

  29. Hautmann S, Gottsmann J, Sparks RSJ, Mattioli GS, Sacks IS, Strutt MH (2010) Effect of mechanical heterogeneity in arc crust on volcano deformation with application to Soufrière Hills Volcano, Montserrat, West Indies. J Geophys Res Solid Earth 115(B9)

  30. Hawkins DB (1981) Kinetics of glass dissolution and zeolite formation under hydrothermal conditions. Clay Clay Miner 29:331–340

    Article  Google Scholar 

  31. Hawkins AB, McConnell BJ (1992) Sensitivity of sandstone strength and deformability to changes in moisture content. Q J Eng Geol Hydrogeol 25(2):115–130

    Article  Google Scholar 

  32. Heap, M. J., & Kennedy, B. M. (2016). Exploring the scale-dependent permeability of fractured andesite. Earth and Planetary Science Letters, 447, 139–150.

  33. Heap, M. J., Villeneuve, M., Kushnir, A. R., Farquharson, J. I., Baud, P., & Reuschlé, T. (2019). Rock mass strength and elastic modulus of the Buntsandstein: an important lithostratigraphic unit for geothermal exploitation in the Upper Rhine Graben. Geothermics, 77, 236-256.

  34. Heap MJ, Wadsworth FB (2016) Closing an open system: pore pressure changes in permeable edifice rock at high strain rates. J Volcanol Geotherm Res 315:40–50

    Article  Google Scholar 

  35. Heap MJ, Farquharson J, Baud P, Lavallée Y, Reuschlé T (2015a) Fracture and compaction of andesite in a volcanic edifice. Bull Volcanol 77(55):55. https://doi.org/10.1007/s00445-015-0938-7

    Article  Google Scholar 

  36. Heap MJ, Kennedy BM, Pernin N, Jacquemard L, Baud P, Farquharson JI, Scheu B, Lavallée Y, Gilg HA, Letham-Brake M, Mayer K, Jolly AD, Reuschlé T, Dingwell DB (2015b) Mechanical behaviour and failure modes in the Whakaari (White Island volcano) hydrothermal system, New Zealand. J Volcanol Geotherm Res 295:26–42. https://doi.org/10.1016/j.jvolgeores.2015.02.012

    Article  Google Scholar 

  37. Heap MJ, Russell JK, Kennedy LA (2016) Mechanical behaviour of dacite from Mount St. Helens (USA): a link between porosity and lava dome extrusion mechanism (dome or spine)? J Volcanol Geotherm Res 328:159–177

    Article  Google Scholar 

  38. Heap MJ, Kennedy B, Farquharson J, Ashworth J, Gilg HA, Scheu B et al (2017a) A multidisciplinary approach to quantify the permeability of a volcanic hydrothermal system (Whakaari/White Island, Taupo Volcanic Zone, New Zealand). J Volcanol Geotherm Res 332:88–108

    Article  Google Scholar 

  39. Heap MJ, Violay M, Wadsworth FB, Vasseur J (2017b) From rock to magma and back again: the evolution of temperature and deformation mechanism in conduit margin zones. Earth Planet Sci Lett 463:92–100

    Article  Google Scholar 

  40. Hedenquist JW, Arribas A, Gonzalez-Urien E (2000) Exploration for epithermal gold deposits. Rev Econ Geol 13(2):45–77

    Google Scholar 

  41. Henley RW, Ellis AJ (1983) Geothermal systems ancient and modern: a geochemical review. Earth Sci Rev 19:1–50

    Article  Google Scholar 

  42. Hoek E, Bieniawski ZT (1965) Brittle fracture propagation in rock under compression. Int J Fract Mech 1(3):137–155

    Article  Google Scholar 

  43. Jakobsson SP, Moore JG (1986) Hydrothermal minerals and alteration rates at Surtsey volcano, Iceland. Geol Soc Am Bull 97:648–659

    Article  Google Scholar 

  44. John DA, Ayuso RA, Barton MD, Blakely RJ, Bodnar RJ, Dilles JH, Gray F, Graybeal FT, Mars JC, Mc Phee DK, and Seal, R. R. (2010). Porphyry copper deposit model, Chapter B of Mineral deposit models for resource assessment: US Geological Survey Scientific InvestigationsReport 2010-5070-B, 169 p. https://pubs.usgs.gov/sir/2010/5070/b/

  45. Kennedy LA, Russell JK, Nelles E (2009) Origins of Mount St. Helens cataclasites: experimental insights. Am Mineral 94(7):995–1004. https://doi.org/10.2138/am.2009.3129

    Article  Google Scholar 

  46. Kilgour G, Blundy J, Cashman K, Mader HM (2013) Small volume andesite magmas and melt–mush interactions at Ruapehu, New Zealand: evidence from melt inclusions. Contrib Mineral Petrol 166(2):371–392

    Article  Google Scholar 

  47. Latter JH (1981) Volcanic earthquakes, and their relationship to eruptions at Ruapehu and Ngauruhoe volcanoes. J Volcanol Geotherm Res 9(4):293–309. https://doi.org/10.1016/0377-0273(81)90041-X

    Article  Google Scholar 

  48. Le Friant A, Boudon G, Komorowski JC, Heinrich P, Semet MP (2006) Potential flank-collapse of Soufriere Volcano, Guadeloupe, lesser Antilles? Numerical simulation and hazards. Nat Hazards 39(3):381–393

    Article  Google Scholar 

  49. Loaiza S, Fortin J, Schubnel A, Gueguen Y, Vinciguerra S, Moreira M (2012) Mechanical behaviour and localized failure modes in a porous basalt from the Azores. Geophys Res Lett 39(19). doi:https://doi.org/10.1029/2012gl053218

    Article  Google Scholar 

  50. López DL, Williams SN (1993) Catastrophic volcanic collapse: relation to hydrothermal processes. Science 260(5115):1794–1796

    Article  Google Scholar 

  51. Manconi R, Walter TR, Amelung F (2007) Effects of mechanical layering on volcano deformation. Geophys J Int 170:952–958

    Article  Google Scholar 

  52. Mayer K, Scheu B, Montanaro C, Yilmaz TI, Isaia R, Aßbichler D, Dingwell DB (2016) Hydrothermal alteration of surficial rocks at Solfatara (Campi Flegrei): Petrophysical properties and implications for phreatic eruption processes. J Volcanol Geotherm Res 320:128–143

    Article  Google Scholar 

  53. Mayer K, Scheu B, Yilmaz TI, Montanaro C, Gilg HA, Rott S et al (2017) Phreatic activity and hydrothermal alteration in the Valley of Desolation, Dominica, Lesser Antilles. Bull Volcanol 79(12):82

    Article  Google Scholar 

  54. Meyer C, Hemley JJ (1967) Geochemistry of hydrothermal ore deposits. Holt, Rinehart and Winston, New York

    Google Scholar 

  55. Moon V, Bradshaw J, Smith R, de Lange W (2005) Geotechnical characterization of stratocone crater wall sequences, White Island volcano, New Zealand. Eng Geol 81:146–178

    Article  Google Scholar 

  56. Mordensky SP, Villeneuve MC, Kennedy BM, Heap MJ, Gravley D, Farquharson JI, Reuschlé T (2018a) Physical and mechanical property relationships of a shallow intrusion and volcanic host rock, Pinnacle Ridge, Mt. Ruapehu, New Zealand. J Volcanol Geotherm Res 359(15):1–20. https://doi.org/10.1016/j.jvolgeores.2018.05.020

    Article  Google Scholar 

  57. Mordensky SP, Villeneuve MC, Farquharson JI, Kennedy BM, Heap MJ, Gravley DM (2018b) Rock mass properties and edifice strength data from Pinnacle Ridge, Mt. Ruapehu, New Zealand. J Volcanol Geotherm Res 367:46–62

    Article  Google Scholar 

  58. Munoz FA, Calvache ML, Cortes GP, Gomez DM, Narvaez L, Ordonez M et al (1993) Galeras volcano: international workshop and eruption. EOS Trans Am Geophys Union 74(281):286–287

    Google Scholar 

  59. Nairn IA, Wood CP, Hewson CAY (1975) Phreatic eruptions of Ruapehu: April 1975. N Z J Geol Geophys 22(2):155–170. https://doi.org/10.1080/00288306.1979.10424215

    Article  Google Scholar 

  60. Nara Y, Meredith PG, Yoneda T, Kaneko K (2011) Influence of macrofractures and microfractures on permeability and elastic wave velocities in basalt at elevated pressure. Tectonophysics 503(1–2):52–59. https://doi.org/10.1016/j.tecto.2010.09.027

    Article  Google Scholar 

  61. Neal T (1996) Pavlof volcano darkens the Alaskan sky. Trans Am Geophys Union 77(51):519–520

    Article  Google Scholar 

  62. Nguyen CT, Gonnermann H, Houghton BF (2014) Explosive to effusive transition during the largest eruption of the 20th century (Novarupta 1912, Alaska). Geology 42(8):703–706

    Article  Google Scholar 

  63. Noh JH, Boles JR (1989) Diagenetic alteration of perlite in the Guryongpo, Republic of Korea. Clay Clay Miner 37:47–58

    Article  Google Scholar 

  64. Okumura S, Sasaki O (2014) Permeability reduction of fractured rhyolite in volcanic conduits and its control on eruption cyclicity. Geology 42:843–846

    Article  Google Scholar 

  65. Parisio F, Vinciguerra S, Kolditz O, Nagel T (2019) The brittle-ductile transition in active volcanoes. Sci Rep 9(1):143

    Article  Google Scholar 

  66. Pérez-Flores P, Wang G, Mitchell TM, Meredith PG, Nara Y, Sarkar V, Cembrano J (2017) The effect of offset on fracture permeability of rocks from the Southern Andes Volcanic Zone, Chile. J Struct Geol 104:142–158

    Article  Google Scholar 

  67. Petcovic HL, Dufek JD (2005) Modeling magma flow and cooling in dikes: implications for emplacement of Columbia River flood basalts. J Geophys Res Solid Earth 110(10):1–15. https://doi.org/10.1029/2004JB003432

    Article  Google Scholar 

  68. Pola A, Crosta G, Fusi N, Barberini V, Norini G (2012) Influence of alteration on physical properties of volcanic rocks. Tectonophysics 566-567:67–86. https://doi.org/10.1016/j.tecto.2012.07.017

    Article  Google Scholar 

  69. Pola A, Crosta GB, Fusi N, Castellanza R (2014) General characterization of the mechanical behaviour of different volcanic rocks with respect to alteration. Eng Geol 169:1–13

    Article  Google Scholar 

  70. Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29(9):779–782

    Article  Google Scholar 

  71. Rosas-Carbajal M, Komorowski JC, Nicollin F, Gibert D (2016) Volcano electrical tomography unveils edifice collapse hazard linked to hydrothermal system structure and dynamics. Sci Rep 6:29899

    Article  Google Scholar 

  72. Rye RO, Bethke PM, Wasserman MD (1991) The stable isotope geochemistry of acid sulfate alteration. Econ Geol 87:225–262

    Article  Google Scholar 

  73. Schaeffer LN, Kendrick JE, Oommen T, Lavallée Y, & Chigna G (2015) Geomechanical rock properties of a basaltic volcano. Frontiers of Earth Science 3:29. https://doi.org/10.3389/feart.2015.00029

  74. Senger K, Millett J, Planke S, Ogata K, Eide CH, Festøy M, Galland O, Jerram DA (2017) Effects of igneous intrusions on the petroleum system: a review. First Break 35(6):47-56. https://doi.org/10.3997/1365-2397.2017011

  75. Sherburn S, Bryan CJ, Hurst AW, Latter JH, Scott BJ (1999) Seismicity of Ruapehu volcano, New Zealand, 1971-1996: a review. J Volcanol Geotherm Res 88(4):255–278. https://doi.org/10.1016/S0377-0273(99)00014-1

    Article  Google Scholar 

  76. Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J, McBirney AR (2000) Encyclopedia of volcanoes. Phys Today 53(10):84–85. https://doi.org/10.1063/1.1325206

    Article  Google Scholar 

  77. Siratovich PA, Heap MJ, Villeneuve MC, Cole J, Kennedy B, Davidson JP, Reuschlé T (2016) Mechanical behaviour of the Rotokawa Andesites (New Zealand): insight into permeability evolution and stress-induced behaviour in an actively utilised geothermal reservoir. Geothermics 64:163–179. https://doi.org/10.1016/j.geothermics.2016.05.005

    Article  Google Scholar 

  78. Violay M, Gibert B, Mainprice D, Evans B, Dautria JM, Azais P, Pezard P (2012) An experimental study of the brittle-ductile transition of basalt at oceanic crust pressure and temperature conditions. J Geophys Res Solid Earth, 117(B3)

  79. Violay M, Gibert B, Mainprice D, Burg JP (2015) Brittle versus ductile deformation as the main control of the deep fluid circulation in oceanic crust. Geophys Res Lett 42(8):2767–2773

    Article  Google Scholar 

  80. White NC, Hedenquist JW (1995) Epithermal gold deposits. Styles, characteristics and exploration. SEG Newsletter 1(23):9–13

    Google Scholar 

  81. White R, McCausland W (2016) Volcano-tectonic earthquakes: a new tool for estimating intrusive volumes and forecasting eruptions. J Volcanol Geotherm Res 309:139–155

    Article  Google Scholar 

  82. Wilson CJN, Houghton BF, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM (1995) Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geotherm Res 68(1–3):1–28. https://doi.org/10.1016/0377-0273(95)00006-g

    Article  Google Scholar 

  83. Wong TF, Baud P (2012) The brittle-ductile transition in porous rocks: a review. J Struct Geol 44:25–53

    Article  Google Scholar 

  84. Woods AW, Koyaguchi T (1994) Transitions between explosive and effusive eruptions of silicic magmas. Nature 370:641–644

    Article  Google Scholar 

  85. Wyering LD, Villeneuve MC, Wallis IC, Siratovich PA, Kennedy BM, Gravley DM (2015) The development and application of the alteration strength index equation. Eng Geol 199:48–61. https://doi.org/10.1016/j.enggeo.2015.10.003

    Article  Google Scholar 

  86. Zhu W, Baud P, Vinciguerra S, Wong T-f (2011) Micromechanics of brittle faulting and cataclastic flow in Alban Hills tuff. J Geophys Res 116(B6). doi:https://doi.org/10.1029/2010jb008046

  87. Zhu W, Baud P, Vinciguerra S, Wong TF (2016) Micromechanics of brittle faulting and cataclastic flow in Mount Etna basalt. J Geophys Res Solid Earth 121(6):4268–4289

    Article  Google Scholar 

  88. Zorn EU, Rowe MC, Cronin SJ, Ryan AG, Kennedy LA, Russell JK (2018) Influence of porosity and groundmass crystallinity on dome rock strength: a case study from Mt. Taranaki, New Zealand. Bull Volcanol 80(35). https://doi.org/10.1007/s00445-018-1210-8

Download references

Acknowledgments

The authors would like to thank Harry Keys and Blake McDavitt from the New Zealand Department of Conservation for field support. We thank Thierry Reuschlé, Patrick Baud, Alexandra Kushnir, and Luke Griffiths for assistance and discussion. The comments of two anonymous reviewers helped improve this manuscript. Mechanical data are available from https://doi.org/10.6084/m9.figshare.7303967.

Funding

This research was funded by the “Quantifying exposure to specific and multiple volcanic hazards” program of the New Zealand Natural Hazards Research Platform (NHRP). The authors of this study also acknowledge the support of the UC Doctoral Scholarship, UC Mason Trust Fund, Hubert CurienPartnership (PHC) Dumont D’Urville travel grant (number 31950RK), MBIE catalyst grant “Energy straight from magma”, and Mercury NZ Limited (formerly Mighty River Power) “Source to Surface” grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. J. Heap.

Additional information

Editorial responsibility: V. Acocella

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mordensky, S.P., Heap, M.J., Kennedy, B.M. et al. Influence of alteration on the mechanical behaviour and failure mode of andesite: implications for shallow seismicity and volcano monitoring. Bull Volcanol 81, 44 (2019). https://doi.org/10.1007/s00445-019-1306-9

Download citation

Keywords

  • Brittle
  • Ductile
  • Andesite
  • Alteration
  • Hydrothermal