Skip to main content
Log in

Total grain size distribution of an intense Hawaiian fountaining event: case study of the 1959 Kīlauea Iki eruption

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The 1959 eruption of Kīlauea Iki on the Island of Hawai’i is a principal example of powerful Hawaiian fountaining. Over 36 days (including repose periods), 16 fountaining episodes created a small cone, a downwind tephra blanket of approximately 0.003 km3 and a lava lake of about 0.04 km3 volume. During the explosive activity, the maximum fountain heights reached 600 m. Based on a dataset of more than 450 tephra grain size samples, we present both a total grain size distribution (TGSD) of the entire downwind tephra deposit, and also TGSDs for two eruptive subunits (the opening and the closing stages). The opening stage was characterized by persistent fountaining over a period of 8 days with fountain heights averaging ∼ 100 m; in contrast, the closing stage was characterized by two short (hours-long) but powerful fountaining episodes (up to 600 m). The significantly different fountaining intensities are reflected in the characteristics of the TGSDs. For the closing stages, we link bimodality of TGSDs to periods of simultaneous deposition of ballistics and fallout from the convective cloud, both of which are a function of the maximum fountain height. The 1959 Kīlauea Iki case study presents a well-constrained set of TGSD data linked with Hawaiian-style fountaining of two contrasting intensities and can be used as a valuable reference point for eruption source parameters in future modeling of pyroclast dispersal during Hawaiian fountaining eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alfano F, Bonadonna C, Watt S, Connor C, Volentik A, Pyle DM (2016) Reconstruction of total grain size distribution of the climactic phase of a long-lasting eruption: the example of the 2008-2013 Chaiten eruption. Bull Volcanol 78:46

    Article  Google Scholar 

  • Andronico D, Cristaldi A, Scollo S (2008) The 4-5 September 2007 fountain at south-east crater of Mt Etna, Italy. J Volcanol Geotherm Res 173:325–328

    Article  Google Scholar 

  • Andronico D, Scollo S, Cristaldi A, Lo Castro MD (2014) Representivity of incompletely sampled fall deposits in estimating eruption source parameters: a test using the 12-13 January 2011 lava fountain deposit from Mt. Etna volcano, Italy. Bull Volcanol 76:861

    Article  Google Scholar 

  • Andronico D, Scollo S, Cristaldi A (2015) Unexpected hazards from tephra fallouts at Mt. Etna: the 23 November 2013 lava fountain. J Volcanol Geotherm Res 304:118–125. https://doi.org/10.1016/j.jvolgeores.2015.08.007

    Article  Google Scholar 

  • Beckett FM, Witham CS, Hort MC, Stevenson JA, Bonadonna C, Millington SC (2015) Sensitivity of dispersion model forecasts of volcanic ash clouds to the physical characteristics of the particles. J Geophys Res - Atmos 120:11,636–11,652

    Article  Google Scholar 

  • Biass S, Bonadonna C (2014) TOTGS: total grainsize distribution of tephra fallout. https://vhub.org/resources/3297

  • Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75(8):742. https://doi.org/10.1007/s00445-013-0742-1

    Article  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Bonadonna C, Macedonio G, Sparks RSJ (2002) Numerical modeling of tephra fallout associated with dome collapses and vulcanian explosions: application to hazard assessment on Montserrat. in: Druitt T, Kokelaar B (Eds) The eruption of Soufrière Hills volcano, Montserrat, from 1995 to 1999. Geol Soc London 517–537

  • Bonadonna C, Genco R, Gouhier M, Pistolesi M, Cioni R, Alfano F, Hoskuldsson A, Ripepe M (2011) Tephra sedimentation during the 2010 Eyjafjallajökull eruption (Iceland) from deposit, radar, and satellite observations. J Geophys Res 116:B12202

    Article  Google Scholar 

  • Bonadonna C, Cioni R, Pistolesi M, Elissondo M, Baumann V (2015) Sedimentation of long-lasting wind-affected volcanic plumes: the example of the 2011 rhyolitic codon caulle eruption, Chile. Bull Volcanol 77:13

    Article  Google Scholar 

  • Brazier S, Davis AN, Sigurdsson H, Sparks RSJ (1982) Fall-out and deposition of volcanic ash during the 1979 explosive eruption of the Soufriere of St. Vincent. J Volcanol Geotherm Res 14(3–4):335–359. https://doi.org/10.1016/0377-0273(82)90069-5

    Article  Google Scholar 

  • Brown WK, Wohletz KH (1995) Derivation of the Weibull distribution based on physical principles and its connection to the Rosin–Rammler and lognormal dis- tributions. J Appl Phys 78(4):2758–2763

    Article  Google Scholar 

  • Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano. J Geophys Res Solid Earth 87(B8):7061–7072

    Article  Google Scholar 

  • Cole PD, Smith PJ, Komorovski JC, Alfano F, Bonadonna C, Stinton A, Christopher T, Odbert HM, Loughlin S (2014) Ash venting occurring both prior to and during lava extrusion at Soufrière hills volcano, Montserrat, from 2005 to 2010. in: Wadge G, Robertson REA, Voight B (Eds) The eruption of Soufrière Hills volcano, Montserrat, from 2000 to 2010. Mem Geol Soc London 39:71–92

  • Corradini S, Spinetti C, Carboni E, Tirelli C, Buongiorno MF, Pugnaghi S, Gangale G (2008) Mt. Etna tropospheric ash retrieval and sensitivity analysis using moderate resolution imaging spectroradiometer measurements. J Appl Remote Sens 2:023550. https://doi.org/10.1117/1.3046674

    Article  Google Scholar 

  • Corradini S, Montopoli M, Guerrieri L, Ricci M, Scollo S, Merucci L, Marzano FS, Pugnaghi S, Prestifilippo M, Ventress L, Grainger RG, Carboni E, Vulpiani G, Coltelli M (2016) A multi-sensor approach for the volcanic ash cloud retrievals and eruption characterization. Remote Sens, Spec Issue on Volcano Remote Sens 8(1):58. https://doi.org/10.3390/rs8010058

    Article  Google Scholar 

  • Costa A, Melnik O, Vedeneeva E (2007) Thermal effects during magma ascent in conduits. J Geophys Res 112(B12)

  • Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophys Geosyst 10(3):10.1029

    Article  Google Scholar 

  • Costa A, Smith VC, Macedonio G, Matthews NE (2014) The magnitude and impact of the youngest Toba tuff super-eruption. Front Earth Sci 2:16. https://doi.org/10.3389/feart.2014.00016

    Article  Google Scholar 

  • Costa A, Pioli L, Bonadonna C (2016) Assessing tephra total grain-size distribution: insights from field data analysis. Earth Planet Sci Lett 443:90–107

    Article  Google Scholar 

  • Costa A, Pioli L, Bonadonna C (2017) Corrigendum to “assessing tephra total grain-size distribution: insights from field data analysis”. Earth Planet Sci Lett 443:90–107

    Article  Google Scholar 

  • Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273:1054–1055

    Article  Google Scholar 

  • Durant AJ (2015) Toward a realistic formulation of fine-ash lifetime in volcanic clouds. Geology 43(3):271–272

    Article  Google Scholar 

  • Durant AJ, Rose WI (2009) Sedimentological constraints on hydrometeor-enhanced particle deposition: 1992 eruptions of crater peak, Alaska. J Volcanol Geotherm Res 186(1–2):40–59

    Article  Google Scholar 

  • Durant AJ, Rose WI, Sarna-Wojcicki AM, Carey S, Volentik ACM (2009) Hydrometeor-enhanced tephra sedimentation: constraints from the 18 May 1980 eruption of Mount St. Helens. J Geophys Res 114:B03204

    Article  Google Scholar 

  • Folch A (2012) A review of tephra transport and dispersal models: evolution, current status, and future perspectives. J Volcanol Geotherm Res 235–236:96–115

    Article  Google Scholar 

  • Freret-Lorgeril V, Donnadieu F, Scollo S, Provost A, Fréville P, Guéhenneux Y, Hervier C, Prestifilippo M, Coltelli M (2018) Mass eruption rate of tephra plumes during the 2011-2015 lava fountain paroxysms at Mt. Etna from Doppler radar retrievals. Front Earth Sci 6:73

    Article  Google Scholar 

  • Gailler L, Kauahikaua J (2017) Monitoring the cooling of the 1959 Kīlauea Iki lava lake using surface magnetic measurements. Bull Volcanol 79:40. https://doi.org/10.1007/s00445-017-1119-7

    Article  Google Scholar 

  • Gonnermann HM (2015) Magma Fragmentation. Annu Rev Earth Planet Sci 43:431–458

    Article  Google Scholar 

  • Gouhier M, Eychenne J, Azzaoui N, Guillin A, Deslandes M, Poret M, Costa A, Husson P (2019) Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere. Nat Sci Rep 9:1449. https://doi.org/10.1038/s41598-019-38595-7

    Article  Google Scholar 

  • Gurioli L, Harris AJL, Colò L, Bernard J, Favalli M, Ripepe M, Andronico D (2013) Classification, landing distribution, and associated flight parameters for a bomb field emplaced during a single major explosion at Stromboli, Italy. Geology 41(5):559–562. https://doi.org/10.1130/G33967.1

    Article  Google Scholar 

  • Heiken G, Wohletz K (1985) Volcanic ash. University of California Press, Berkeley

    Google Scholar 

  • Houghton BF, Swanson DA, Carey RJ, Rausch J, Sutton AJ (2011) Pigeonholing pyroclasts: insights from the 19 March 2008 explosive eruption of Kīlauea volcano. Geology 39:263–266

    Article  Google Scholar 

  • Houghton BF, Swanson DA, Biass S, Fagents SA, Orr TR (2017) Partitioning of pyroclasts between ballistic transport and a convective plume: Kīlauea volcano, 19 March 2008. J Geophys Res Solid Earth 122:3379–3391

    Article  Google Scholar 

  • Janebo MH, Houghton BF, Thordarson T, Bonadonna C, Carey RJ (2018) Total grain-size distribution of four subplinian-Plinian tephras from Hekla volcano, Iceland: implications for sedimentation dynamics and eruption source parameters. J Volcanol Geotherm Res 357:25–38

    Article  Google Scholar 

  • Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J Geophys Res Solid Earth 103(B12):29759–29779

    Article  Google Scholar 

  • Klawonn M, Houghton BF, Swanson DA, Fagents SA, Wessel P, Wolfe CJ (2014) From field data to volumes: constraining uncertainties in pyroclastic eruption parameters. Bull Volcanol 76:839

    Article  Google Scholar 

  • Krumbein WC (1934) Size frequency distributions of sediments. J Sediment Res 4:65–67

    Article  Google Scholar 

  • Macedonio G, Dobran F, Beri A (1994) Erosion processes in volcanic conduits and an application to the AD 79 eruption of Vesuvius. Earth Planet Sci Lett 121:137–152

    Article  Google Scholar 

  • Macedonio G, Costa A, Scollo S, Neri A (2016) Effects of eruption source parameter variation and meteorological dataset on tephra fallout hazard assessment: example from Vesuvius (Italy). J Appl Volcanol 5:5

    Article  Google Scholar 

  • Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186(1–2):10–21

    Article  Google Scholar 

  • Melnik OE (1999) Fragmenting magma. Nature 397(6718):394–395

    Article  Google Scholar 

  • Mueller S, Scheu B, Spieler O, Dingwell DB (2008) Permeability control on magma fragmentation. Geology 36:399–402

    Article  Google Scholar 

  • Mueller SB, Houghton BF, Swanson DA, Fagents SA, Klawonn M (2018) Intricate episodic growth of a Hawaiian tephra deposit: the case study of the 1959 Kīlauea Iki eruption, Hawaii. Bull Volcanol 80:73

    Article  Google Scholar 

  • Murrow PJ, Rose WI, Self S (1980) Determination of the total grain size distribution in a Vulcanian eruption column, and its implications to stratospheric aerosol perturbation. Geophys Res Lett 7(11):893-896

    Article  Google Scholar 

  • Namiki A, Manga M (2008) Transition between fragmentation and permeable outgassing of low viscosity magmas. J Volcanol Geotherm Res 169:48–60

    Article  Google Scholar 

  • Okabe A, Boots B, Sugihara K, Chiu SN (2000) Spatial tessellations – concepts and applications of Voronoi diagrams, Wiley Series in Probability and Statistics, 2nd edn. John Wiley, Chichester

    Book  Google Scholar 

  • Papale P (1999) Strain-induced magma fragmentation in explosive eruptions. Nature 397:425–428

    Article  Google Scholar 

  • Parfitt EA (1998) A study of clast size distribution, ash deposition and fragmentation in a Hawaiian-style volcanic eruption. J Volcanol Geotherm Res 84:197–208

    Article  Google Scholar 

  • Pedrazzi D, Sunye-Puchol I, Aguirre-Díaz G, Costa A, Smith VC, Poret M, Dávila-Harris P, Miggins DP, Hernández W, Gutiérrez E (2019) The Ilopango Tierra Blanca Joven (TBJ) eruption, El Salvador: volcano-stratigraphy and physical characterization of the major Holocene event of Central America. J Volcanol Geotherm Res 376:81–102. https://doi.org/10.1016/j.jvolgeores.2019.03.006

    Article  Google Scholar 

  • Polacci M, Papale P, Rosi M (2001) Textural heterogeneities in pumices from the climactic eruption of Mount Pinatubo, 15 June 1991, and implications for magma ascent dynamics. Bull Volcanol 63:105–113

    Article  Google Scholar 

  • Poland, M.P., Takahashi, T.J., and Landowski, C.M., eds 2014. Characteristics of Hawaiian volcanoes: U.S. geological survey professional paper 1801, 428 p, https://doi.org/10.3133/pp1801

  • Poret M (2018) Modelling ash cloud dispersion and the impact of ash aggregation during volcanic eruptions. Ph.D. thesis, alma matter Studiorum, University of Bologna, Italy. https://doi.org/10.13140/RG.2.2.35832.55041

    Book  Google Scholar 

  • Poret M, Costa A, Folch A, Martí A (2017) Modelling tephra dispersal and ash aggregation: the 26th April 1979 eruption, La Soufrière St. Vincent. J Volcanol Geotherm Res 347:207–220. https://doi.org/10.1016/j.jvolgeores.2017.09.012

    Article  Google Scholar 

  • Poret M, Corradini S, Merucci L, Costa A, Andronico D, Vulpiani G, Montopoli M, Freret-Lorgeril V (2018a) Reconstructing volcanic plume evolution integrating satellite and ground-based data: application to the 23 November 2013 Etna eruption. Atmos Chem Phys 18(7):4695–4714. https://doi.org/10.5194/acp-18-4695-2018

    Article  Google Scholar 

  • Poret M, Costa A, Andronico D, Scollo S, Gouhier M, Cristaldi A (2018b) Modeling eruption source parameters by integrating field, ground-based and satellite-based measurements: the case of the 23 February 2013 Etna paroxysm. J Geophys Res Solid Earth 123:5427–5450. https://doi.org/10.1029/2017JB015163

    Article  Google Scholar 

  • Pouget S, Bursik M, Webley P, Dehn J, Pavolonis M (2013) Estimation of eruption source parameters from umbrella cloud or downwind plume growth rate. J Volcanol Geotherm Res 258:100–112

    Article  Google Scholar 

  • Richter DH, Eaton JP, Murata KJ, Ault WU, Krivoy HL (1970) Chronological narrative of the 1959-60 eruption of Kīlauea volcano. Hawaii US Geol Sury Prof Pap 537-E

  • Ripepe M, Bonadonna C, Folch A, Delle Donne D, Lacanna G, Marchetti E, Höskuldsson A (2013) Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: the 2010 Eyjafjallajökull eruption. Earth Planet Sci Lett 366:112–121

    Article  Google Scholar 

  • Rose WI (1993) Comment on ‘another look at the calculation of fallout tephra volumes’ by Judy Fierstein and Manuel Nathenson. Bull Volcanol 55(5):372–374

    Article  Google Scholar 

  • Rose WI, Durant AJ (2009) Fine ash content of explosive eruptions. J Volcanol Geotherm Res 186:32–39

    Article  Google Scholar 

  • Rose WI, Self S, Murrow PJ, Bonadonna C, Durant AJ, Ernst GG (2007) Nature and significance of small volume fall deposits at composite volcanoes: insights from the October 14, 1974 Fuego eruption, Guatemala. Bull Volcanol 10(1007)

  • Rust AC, Cashman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res Solid Earth 116(B11):B11202

    Article  Google Scholar 

  • Spanu A, Vitturi MM, Barsotti S (2016) Reconstructing eruptive source parameters from tephra deposit: a numerical study of medium-sized explosive eruptions at Etna volcano. Bull Volcanol 78:59

    Article  Google Scholar 

  • Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm res 3:1-37

    Article  Google Scholar 

  • Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Philos Trans R Soc Lond A 299:241–273

    Article  Google Scholar 

  • Sparks R, Bursik M, Carey S, Gilbert J, Glaze L, Sigurdsson H, Woods A (1997) Volcanic plumes. John Wiley, Chichester

    Google Scholar 

  • Stovall WK, Houghton BF, Harris AJL, Swanson DA (2009) A frozen record of density-driven crustal overturn in lava lakes: the example of Kīlauea Iki 1959. Bull Volcanol 71:313–318. https://doi.org/10.1007/s00445-008-0225-y

    Article  Google Scholar 

  • Stovall WK, Houghton BF, Hammer JE, Fagents SA, Swanson DA (2011) Vesiculation of high fountaining Hawaiian eruptions: episodes 15 and 16 of 1959 Kīlauea Iki. Bull Volcanol 74(2):441–455

    Article  Google Scholar 

  • Sulpizio R, Folch A, Costa A, Scaini C, Dellino P (2012) Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation. Bull Volcanol 74:2205–2218

    Article  Google Scholar 

  • Taddeucci J, Scarlato P, Andronico D, Cristaldi A, Büttner R, Zimanowski B, Kueppers U (2007) Advances in the study of volcanic ash. EOS Earth Space Sci News 88(24):253–256

    Google Scholar 

  • Tenchov BG, Yanev TK (1986) Weibull distribution of particle sizes obtained by uniform random fragmentation. J Colloid Interface Sci 111(1):1–7

    Article  Google Scholar 

  • Tournigand PY, Taddeucci J, Gaudin D, Peña-Fernandez JJ, Del Bello E, Scarlato P, Kueppers U, Sesterhenn J, Akihiko Y (2017) The initial development of transient volcanic plumes as a function of source conditions. J Geophys Res 122:9784–9803. https://doi.org/10.1002/2017JB014907

    Article  Google Scholar 

  • Tournigand PY, Peña-Fernandez JJ, Taddeucci J, Perugini D, Sesterhenn J, Palladino DM (2019) Time evolution of transient volcanic plumes: insights from fractal analysis. J Volcanol Geotherm Res 371(59–71):59–71. https://doi.org/10.1016/j.jvolgeores.2018.12.007

    Article  Google Scholar 

  • Tsunematsu K, Bonadonna C (2015) Grain-size features of two large eruptions from Cotopaxi volcano (Ecuador) and implications for the calculation of the total grain-size distribution. Bull Volcanol 77(7):64

    Article  Google Scholar 

  • Walker GPL (1981) Characteristics of two phreatoplinian ashes, and their water-flushed origin. J Volcanol Geotherm Res 9:395–407

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contribution of numerous individuals who helped dig tephra pits for this study. We thank Wendy Cockshell for her help with sieving the samples. MP is grateful to Antonio Costa for fruitful discussions. We thank the Hawai’i Volcanoes National Park for their permission to carry out our fieldwork. We thank Alexa Van Eaton for an internal (USGS) review of the manuscript, as well as Daniele Andronico and Larry Mastin for constructive journal reviews. Associate Pierre-Simon Ross, and executive editors Andrew Harris and Jacopo Taddeucci, also provided useful feedback on the manuscript.

Funding

This research was supported by NSF grants EAR-0499303, EAR-0810332, EAR-1145159, and EAR1521855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce F Houghton.

Additional information

Editorial responsibility: P-S. Ross

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueller, S.B., Houghton, B.F., Swanson, D.A. et al. Total grain size distribution of an intense Hawaiian fountaining event: case study of the 1959 Kīlauea Iki eruption. Bull Volcanol 81, 43 (2019). https://doi.org/10.1007/s00445-019-1304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-019-1304-y

Keywords

Navigation