Skip to main content
Log in

Understanding the origin of magmatic necks: insights from Mt. Etna volcano (Italy) and analogue models

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Magmatic necks are commonly found in volcanic areas, and they often exhibit a homogeneous structure with a cylindrical shape and a diameter of up to several hundreds of metres. Their massive and uniform structure poses a space problem for their emplacement in the brittle crust. Here, we use field data and analogue models to investigate how necks may emplace at shallow levels. Field analysis focuses on characterising the geometric, structural and magmatic features of two necks outcropping in the eroded portions of Mt. Etna, Italy. These are homogeneous and massive intrusive bodies, related to a single episode of emplacement at 400–600 m below the paleosurface. We further investigated their possible emplacement mechanism through analogue models, injecting vegetable oil within (a) a flat sand pack and (b) a sand cone. Dikes form with both configurations, erupting to the surface through vents. However, dikes injected within the cone are characterised by a larger thickening at shallow levels, in correspondence with the vent, where a neck-like structure forms. This suggests that the gravitational load imposed by a volcanic edifice provides the most suitable conditions for the development of magmatic neck, as the downslope shear stresses enhance the deformation of the cone slope during shallow dike emplacement promoting shallow dilation and thickening of the dike. Therefore, topography should be a further factor enhancing the development of necks, in addition to those mechanisms previously proposed. Our results are consistent with natural examples of feeder dikes thickening towards the surface and dikes transitioning to necks, supporting the reliability of the proposed conceptual model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acocella V, Neri M (2003) What makes flank eruptions? The 2001 Etna eruption and its possible triggering mechanisms. Bull Volcanol 65:517–529. https://doi.org/10.1007/s00445-003-0280-3

    Article  Google Scholar 

  • Acocella V, Neri M (2009) Dike propagation in volcanic edifices: overview and possible developments. Tectonophysics 471:67–77. https://doi.org/10.1016/j.tecto.2008.10.002

    Article  Google Scholar 

  • Acocella V, Neri N, Behncke B, Bonforte A, Del Negro C, Ganci G (2016) Why does a mature volcano need new vents? The case of the new southeast crater at Etna. Front Earth Sci 4:67. https://doi.org/10.3389/feart.2016.00067

    Article  Google Scholar 

  • Azzaro R, Bonforte A, Branca S, Guglielmino F (2013) Geometry and kinematics of the fault systems controlling the unstable flank of Etna volcano (Sicily). J of Volcanol Geotherm Res 251:5–15

    Article  Google Scholar 

  • Billi A, Acocella V, Funiciello R, Giordano G, Lanzafame G, Neri M (2003) Mechanisms for ground-surface fracturing and incipient slope failure associated with the 2001 eruption of Mt. Etna, Italy: analysis of ephemeral field data. J Volcanol Geotherm Res 122:281–294. https://doi.org/10.1016/S0377-0273(02)00507-3

    Article  Google Scholar 

  • Branca S, Coltelli M, De Beni E, Wijbrans J (2008) Geological evolution of Mount Etna volcano (Italy) from earliest products until the first central volcanism (between 500 and 100 ka ago) inferred from geochronological and stratigraphic data. Intern J Earth Sci 97:135–152. https://doi.org/10.1007/s00531-006-0152-0

    Article  Google Scholar 

  • Branca S, Coltelli M, Groppelli G (2011a) Geological evolution of a complex basaltic startovolcano: Mount Etna, Italy. Ital J Geosci (Boll Soc Geol It) 130(3):306–317. https://doi.org/10.3301/IJG.2011.13

    Article  Google Scholar 

  • Branca S, Coltelli M, Groppelli G, Lentini F (2011b) Geological map of Etna volcano, 1:50.000 scale. It J Geosci (Boll Soc Geol It) 130(3):00–00. https://doi.org/10.3301/IJG.2011.15

    Article  Google Scholar 

  • Brown RJ, Kavanagh J, Sparks RSJ, Tait M, Field M (2007) Mechanically disrupted and chemically weakened zones in segmented dike systems cause vent localization: evidence from kimberlite volcanic systems. Geology 35(9):815–818

    Article  Google Scholar 

  • Bruce PM, Huppert HE (1990) Solidification and melting along dikes by the laminar flow of basaltic magma. In: Ryan MP (ed) Magma transport and storage. Wiley, London, pp 87–101

    Google Scholar 

  • Calvari S, Groppelli GL, Pasquarè G (1994) Preliminary geological data on the south-western walls of Valle del Bove, Mt. Etna (Sicily). Acta Vulcanol 5:15–30

    Google Scholar 

  • Calvari S, Tanner LH, Groppelli GL, Norini G (2004) A comprehensive model for the opening of the Valle del Bove depression and hazard evaluation for the eastern flank of Etna volcano. In: “Etna volcano laboratory”, Bonaccorso, Calvari Coltelli, Del Negro, Falsaperla (Eds.), AGU (Geophysical monograph), 143 65–75

  • Carey RJ, Houghton B, Sable J, Wilson C (2007) Contrasting grain size and componentry in complex proximal deposits of the 1886 Tarawera basaltic Plinian eruption. Bull Volcanol 69(8):903–926

    Article  Google Scholar 

  • Corsaro RA, Neri M, Pompilio M (2002) Paleo-environmental and volcano-tectonic evolution of the south-eastern flank of Mt. Etna during the last 225 ka inferred from volcanic succession of the «Timpe», Acireale, Sicily. J Volcanol Geotherm Res 113:289–306. https://doi.org/10.1016/S0377-0273(01)00262-1

    Article  Google Scholar 

  • De Beni E, Branca S, Coltelli M, Groppelli G, Wijbrans J (2011) 40Ar/39Ar isotopic dating of Etna volcanic succession. It J Geosci (Boll Soc Geol It) 130(3):00–00. https://doi.org/10.3301/IJG.2011.14

    Article  Google Scholar 

  • Delaney PT, Pollard DD (1981) Deformation of host rocks and flow of magma during growth of minette dikes and breccia bearing intrusions near Ship Rock, New Mexico. USGS Prof Pap 1202:61

    Google Scholar 

  • Dieterich JH (1988) Growth and persistence of Hawaiian volcanic rift zones. J Geophys Res Solid Earth 93(B5):4258–4270. https://doi.org/10.1029/JB093iB05p04258

    Article  Google Scholar 

  • Ferlito C, Cristofolini R (1989) Geologia dell’area sommitale dell’Etna. Boll Acc Gioenia Sci Nat 22:357–380

    Google Scholar 

  • Ferrari L, Garduno VH, Neri M (1991) I dicchi della Valle del Bove, Etna: un metodo per stimare le dilatazioni di un apparato vulcanico. Mem Soc Geol It 47:495–508

    Google Scholar 

  • Francalanci L, Lucchi F, Keller J, De Astis G, Tranne CA (2013) Eruptive, volcano-tectonic and magmatic history of the Stromboli volcano (north-eastern Aeolian archipelago). Geol Soc Lond Mem 37(1):397–471. https://doi.org/10.1144/M37.13

    Article  Google Scholar 

  • Galindo I, Gudmundsson A (2012) Basaltic feeder dykes in rift zones: geometry, emplacement, and effusion rates. Nat Hazards Earth Syst Sci 12:3683–3700. https://doi.org/10.5194/nhess-12-3683-2012

    Article  Google Scholar 

  • Galland O, Holohan E, De Vries BVW, Burchardt S (2015) Laboratory modelling of volcano plumbing systems: a review. In: Nemeth K (ed) Advances in volcanology. Springer, Berlin, Heidelberg, pp 1–68

    Google Scholar 

  • Geshi N, Kusmoto S, Gudmundsson A (2010) Geometric difference between non-feeder and feeder dikes. Geology 38:195–198. https://doi.org/10.1130/G30350.1

    Article  Google Scholar 

  • Giammanco S, Melián G, Neri M, Hernández PA, Sortino F, Barrancos J, López M, Pecoraino G, Perez NM (2016) Active tectonic features and structural dynamics of the summit area of Mt. Etna (Italy) revealed by soil CO2 and soil temperature surveying. J Volcanol Geotherm Res 311:79–98. https://doi.org/10.1016/j.jvolgeores.2016.01.004

    Article  Google Scholar 

  • Gray TGF (1992) Handbook of crack opening data: Cambridge, UK, Abington Publishing, 96 p

  • Hallett RB (1992) Volcanic geology of the Rio Puerco necks: New Mexico Geological Society. Guidebook 43:135–144

    Google Scholar 

  • Hooten JA, Ort MH (2002) Peperite as a record of early-stage phreatomagmatic fragmentation processes: an example from the Hopi Buttes volcanic field, Navajo Nation, Arizona, USA. J Volcanol Geotherm Res 114(1–2):95–106

    Article  Google Scholar 

  • Keating GN, Valentine GA, Kier DJ, Perry FV (2008) Shallow plumbing systems for small-volume basaltic volcanoes. Bull Volcanol 70:563–582. https://doi.org/10.1007/s00445-007-0154-1

    Article  Google Scholar 

  • Kieffer G (1985) Evolution structural et dynamique d’un grand volcan poligénique: Stades d’edification et activitè actuelle de l’Etna (Sicile). Univ Clermont-Ferrand II Clermont-Ferrand France, Dissertation

    Google Scholar 

  • Kiyosugi K, Connor CB, Wetmore PH, Ferwerda BP, Germa AM, Connor LJ, Hintz AR (2012) Relationship between dike and volcanic conduit distribution in a highly eroded monogenetic volcanic field: San Rafael, Utah, USA. Geology 40:695–698

    Article  Google Scholar 

  • Kwon CW, Sohn YK (2008) Tephra-filled volcanic neck (diatreme) of a mafic tuff ring at Maegok, Miocene Eoil Basin, SE Korea. Geosci J 12:317–329

    Article  Google Scholar 

  • Lanzafame G, Leonardi A, Neri M, Rust D (1997) Late overthrust of the Appenine-Maghrebian Chain at the NE periphery of Mt. Etna, Italy. C R Acad Sci Paris 324:325–332

    Google Scholar 

  • Lefebvre NS, White JDL, Kjarsgaard BA (2012) Spatter-dike reveals subterranean magma diversions: consequences for small multivent basaltic eruptions. Geology 40(5):423–426

    Article  Google Scholar 

  • Lentini F, Carbone S, Guarnieri P (2006) Collisional and postcollisional tectonics of the Apenninic-Maghrebian orogen (southern Italy). Geol Soc Am Spec Pap 409:57–81

    Google Scholar 

  • Lucchi F, Santo AP, Tranne CA, Peccerillo A, Keller J (2013) Volcanism, magmatism, volcano-tectonics and sea-level fluctuations in the geological history of Filicudi (western Aeolian archipelago). Geol Soc Lond Mem 37(1):113–153. https://doi.org/10.1144/M37.8

    Article  Google Scholar 

  • Marsh BD (1996) Solidification fronts and magmatic evolution. Min Mag 60:5–40

    Article  Google Scholar 

  • Marsh BD (2013) On some fundamentals of igneous petrology. Contrib Mineral Petrol 166:665e690

    Article  Google Scholar 

  • Marsh BD (2015) Magma chambers. In: The encyclopedia of volcanoes, second edn, pp 185–201

  • McGuire WJ (1983) Prehistoric dyke trends on Mount Etna: implications for magma transport and storage. Bull Volcanol 46:9–22. https://doi.org/10.1007/BF02598242

    Article  Google Scholar 

  • McGuire WJ, Pullen AD (1989) Location and orientation of eruptive fissures and feeder dykes at Mount Etna; influence of gravitational and regional stress regimes. J Volcanol Geotherm Res 38:325–244. https://doi.org/10.1016/0377-0273(89)90046-2

    Article  Google Scholar 

  • Motoki A, Campos TF, Fonseca VP, Motoki KF (2012) Subvolcanic neck of Cabugi Peak, state of Rio Grande do Norte, Brazil, and origin of its landform. Rem: Revista Escola de Minas 65(2)

  • Neri M, Acocella V, Behncke B, Giammanco S, Mazzarini F, Rust D (2011) Structural analysis of the eruptive fissures at Mount Etna (Italy). Ann Geophys 54(5):464–479. https://doi.org/10.4401/ag-5332

    Article  Google Scholar 

  • Norini G, Acocella V (2011) Analogue modeling of flank instability at Mount Etna: understanding the driving factors. J Geophys Res Solid Earth 116:B07206. https://doi.org/10.1029/2011JB008216

    Article  Google Scholar 

  • Patané G, Agostino I, La Delfa S, Leonardi R (2009) Evolution of volcanism around the eastern sector of Mt. Etna, inland and offshore, in the structural framework of eastern Sicily. Phys Earth Planet Inter 173(3–4):306–316

    Article  Google Scholar 

  • Re G, White JD, Muirhead JD, Ort MH (2016) Subterranean fragmentation of magma during conduit initiation and evolution in the shallow plumbing system of the small-volume jagged rocks volcanoes (Hopi Buttes Volcanic Field, Arizona, USA). Bull of Volcanol 78(8):55

    Article  Google Scholar 

  • Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23(1):287–336. https://doi.org/10.1146/annurev.ea.23.050195.001443

    Article  Google Scholar 

  • Ruch J, Pepe S, Casu F, Solaro G, Pepe A, Acocella V, Neri M, Sansosti E (2013) Seismo-tectonic behavior of the Pernicana Fault System (Mt Etna): a gauge for volcano flank instability? J Geophys Res Solid Earth 118:4398–4409. https://doi.org/10.1002/jgrb.50281

    Article  Google Scholar 

  • Siniscalchi A, Tripaldi S, Neri M, Balasco M, Romano G, Ruch J (2012) Schiavone D (2012) flank instability structure of Mt Etna inferred by a magnetotelluric survey. J Geophys Res 117:B03216. https://doi.org/10.1029/2011JB008657

    Article  Google Scholar 

  • Solaro G, Acocella V, Pepe S, Ruch J, Neri M, Sansosti E (2010) Anatomy of an unstable volcano through InSAR data: multiple processes affecting flank instability at Mt. Etna in 1994-2008. J Geophys Res 115:B10405. https://doi.org/10.1029/2009JB000820

    Article  Google Scholar 

  • Sparks RSJ, Baker L, Brown RJ, Field M, Schumacher J, Stripp G, Walters A (2006) Dynamical constraints on kimberlite volcanism. J Volcanol Geotherm Res 155:18–48

    Article  Google Scholar 

  • Thielicke W, Stamhuis EJ (2014) PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J Open Res Soft 2(1). https://doi.org/10.5334/jors.bl

  • Townsend M, Pollard DD, Jhonson K, Culha C (2015) Jointing around magmatic dikes as a precursor to the development of volcanic plugs. Bull Volcanol 77:92. https://doi.org/10.1007/s00445-015-0978-z

    Article  Google Scholar 

  • Vigneresse JL, Tikoff B, Améglio L (1999) Modification of the regional stress field by magma intrusions and formation of tabular granitic plutons. Tectonophysics 302:203–224. https://doi.org/10.1016/S0040-1951(98)00285-6

    Article  Google Scholar 

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1–4):1–29

    Article  Google Scholar 

  • Wright TL, Klein FW (2014) Two hundred years of magma transport and storage at Kilauea Volcano, Hawaii. 1790e2008. U.S. Geological Survey Professional Paper, Washington, D.C, https://doi.org/10.3133/pp1806

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fittipaldi.

Additional information

Editorial responsibility: J. Taddeucci

Electronic supplementary material

ESM 1

(DOC 47 kb)

Fig. S1

Field view of Neck 2. (JPG 364 kb)

Fig. S2

Detailed picture showing the homogeneous texture and several mm to cm-sized phenocrysts of pyroxene. (JPG 332 kb)

Fig. S3

Band of thermal alteration along the contact between Neck 2 and Py deposit. (JPG 484 kb)

Fig. S4

a) figure showing the mean strike direction of the dikes (yellow line) that is radial to the Ellittico caldera paleosummit; b) main faults affecting the eastern flank of Mt. Etna. (JPG 245 kb)

Table S1

(DOC 30 kb)

Table S2

(DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fittipaldi, M., Urbani, S., Neri, M. et al. Understanding the origin of magmatic necks: insights from Mt. Etna volcano (Italy) and analogue models. Bull Volcanol 81, 11 (2019). https://doi.org/10.1007/s00445-019-1273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-019-1273-1

Keywords

Navigation