Skip to main content
Log in

Ice-confined construction of a large basaltic volcano—Austurfjöll massif, Askja, Iceland

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Austurfjöll is the largest basaltic glaciovolcanic massif at Askja volcano (Central Iceland), and through detailed studies of its volcanological and geochemical characteristics, we provide a detailed account of the sequence and structure of the ice-confined construction of a large Icelandic basaltic volcano. In particular, Austurfjöll represents a geometry of vents, and resulting glaciovolcanic morphology, not previously documented in ice-confined basaltic volcanoes. Austurfjöll was constructed during two major phases of basaltic volcanism, via seven eruptive episodes through disperse fissure-dominated eruptions. The earliest episode involved a rare and poorly exposed example of subaerial activity, and this was succeeded by six episodes involving the eruption of ice-confined pillow lavas and numerous overlapping fissure eruptions of phreatomagmatic tephra. Evidence of local subaerial lavas and tephras indicates the local growth of eruptive centers above englacial lake levels, and subsequent flooding, but no prolonged subaerial activity. Localized ice-contact facies, paleowater levels, and diamictons indicate the position and thickness of the ice was variable during the construction of Austurfjöll, and eruptive activity likely occurred in multiple and variable level meltwater lakes during the last glacial period. Lithofacies evidence including gradational transitions from effusive to explosive deposits, superposition of fragmental facies above coherent facies, and drainage channels suggest that changes in eruptive style were driven largely by external factors such as drainage and the increasing elevation of the massif. This study emphasizes the unique character of Austurfjöll, being composed of large pillow lava sheets, numerous (> 40) overlapping glaciovolcanic tindars, and only localized emergent deposits, as a product of its prolonged ice-confined eruptive history, contrasts with previous descriptions of tuyas and tindars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Annertz K, Nilsson M, Sigvaldason GE (1985) The postglacial history of Dyngjufjöll In: NORVULK. Nordic Volcanological Institute, Reykjavik p 22

  • Baer G (1995) Fracture propagation and magma flow in segmented dykes: field evidence and fabric analyses, Makhtesh Ramon, Israel. In: Baer G, Heimann A (eds) Physics and chemistry of dykes. Geological survey of Israel, Balkema, pp 125–140

    Google Scholar 

  • Bennett MR, Huddart D, Waller RI (2006) Diamict fans in subglacial water-filled cavities- a new glacial environment. Quat Sci Rev 25:3050–3069. https://doi.org/10.1016/j.quascirev.2006.05.004

    Article  Google Scholar 

  • Bergh SG, Sigvaldason GE (1991) Pleistocene mass-flow deposits of basaltic hyaloclastite on a shallow submarine shelf, South Iceland. Bull Volcanol 53:597–611

    Article  Google Scholar 

  • Carey R, Houghton BF, Thordarson T (2009) Abrupt shifts between wet and dry phases of the 1875 eruption of Askja Volcano: microscopic evidence for macroscopic dynamics. J Volcanol Geotherm Res 184:256–270. https://doi.org/10.1016/j.jvolgeores.2009.04.003

    Article  Google Scholar 

  • Carlisle D (1963) Pillow breccias and their aquagene tuffs, Quadra Island, British Columbia. The Journal of Geology 71:48–71

    Article  Google Scholar 

  • Carrivick JL, Russell AJ, Rushmer EL, Tweed FS, Marren PM, Deeming H, Lowe OJ (2009) Geomorphological evidence towards a de-glacial control on volcanism. Earth Surf Process Landf 34:1164–1178. https://doi.org/10.1002/esp.1811

    Article  Google Scholar 

  • Dimroth E, Pierre C, Leduc M, Sanshagrin Y (1978) Structure and organization of Archean subaqueous basalt flows, Rouyn-Noranda area, Quebec, Canada. Canadian Journal of Earth Science 15:902–918

    Article  Google Scholar 

  • Doyle MG (2000) Clast shape and textural associations in peperite as a guide to hydromagmatic interactions: upper Permian basaltic and basaltic andesite examples from Kiama, Australia. Aust J Earth Sci 47:167–177. https://doi.org/10.1046/j.1440-0952.2000.00773.x

    Article  Google Scholar 

  • Edwards BR, Russell JK, Anderson RG (2002) Subglacial, phonolitic volcanism at Hoodoo Mountain volcano, northern Canadian Cordillera. Bull Volcanol 64:254–272. https://doi.org/10.1007/s00445-002-0202-9

    Article  Google Scholar 

  • Edwards BR, Skilling IP, Cameron B, Haynes C, Lloyd A, Hungerford JHD (2009) Evolution of an englacial volcanic ridge: Pillow Ridge tindar, Mount Edziza volcanic complex, NCVP, British Columbia, Canada. J Volcanol Geotherm Res 185:251–275. https://doi.org/10.1016/j.jvolgeores.2008.11.015

    Article  Google Scholar 

  • Edwards BR, Russell JK, Simpson K (2011) Volcanology and petrology of Mathews Tuya, northern British Columbia, Canada: glaciovolcanic constraints on interpretations of the 0.730 Ma Cordilleran paleoclimate. Bull Volcanol 73:479–496. https://doi.org/10.1007/s00445-010-0418-z

    Article  Google Scholar 

  • Edwards BR, Gudmundsson MT, Russell JK (2015) Glaciovolcanism. In: Sigurdsson H (ed) The encyclopedia of volcanoes, 2nd edn. Academic Press, pp 377–393. https://doi.org/10.1016/B978-0-12-385938-9.00020-1

  • Einarsson P (2008) Plate boundaries, rifts and transforms in Iceland. Jokull 58:35–58

    Google Scholar 

  • Ghatan G, Head JW (2002) Candidate subglacial volcanoes in the south polar region of Mars: morphology, morphometry, and eruption conditions. J Geophys Res Planets 107:2–1–1–19. https://doi.org/10.1029/2001JE001519

  • Goto Y, McPhie J (2004) Morphology and propagation styles of Miocene submarine basanite lavas at Stanley, northwestern Tasmania, Australia. J Volcanol Geotherm Res 130:307–328. https://doi.org/10.1016/S0377-0273(03)00311-1

    Article  Google Scholar 

  • Graettinger AH, Skilling IP, McGarvie DW, Höskuldsson A (2012) Intrusion of basalt into frozen sediments and generation of Coherent-Margined Volcaniclastic Dikes (CMVDs). J Volcanol Geotherm Res 217-218:30–38. https://doi.org/10.1016/j.jvolgeores.2011.12.008

    Article  Google Scholar 

  • Graettinger AH, Ellis MK, Skilling IP, Reath K, Ramsey MS, Lee RJ, Hughes CG, McGarvie DW (2013a) Remote sensing and geologic mapping of glaciovolcanic deposits in the region surrounding Askja (Dyngjufjöll) volcano, Iceland. Int J Remote Sens 34:7178–7198. https://doi.org/10.1080/01431161.2013.817716

    Article  Google Scholar 

  • Graettinger AH, Skilling IP, McGarvie DW, Höskuldsson A (2013b) Subaqueous basaltic magmatic explosions trigger phreatomagmatism: a case study from Askja, Iceland. J Volcanol Geotherm Res 264:17–35. https://doi.org/10.1016/j.jvolgeores.2013.08.001

    Article  Google Scholar 

  • Gregg TKP, Fink JH (1995) Quantification of submarine lava-flow morphology through analog experiments. Geology 23:73–76

    Article  Google Scholar 

  • Gregg TKP, Smith D (2003) Volcanic investigations of the Puna Ridge, Hawai’i: relations of lava flow morphologies and underlying slopes. J Volcanol Geotherm Res 126:63–77. https://doi.org/10.1016/S0377-0273(03)00116-1

    Article  Google Scholar 

  • Gudmundsson MT, Sigmundsson F, Björnsson H (1997) Ice-volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland. Nature 389:954–957

    Article  Google Scholar 

  • Hartley ME, Thordarsson T, de Joux A (2016) Postglacial eruptive history of the Askja region, North Iceland. Bull Volcanol 78:28. https://doi.org/10.1007/s00445-016-1022-7

    Article  Google Scholar 

  • Hickson CJ (2000) Physical controls and resulting morphological forms of Quaternary ice-contact volcanoes in western Canada. Geomorphology 32:239–261

    Article  Google Scholar 

  • Höskuldsson Á (1987) Some chemical properties of the Askja volcanic center In: Nordic Volcanological Institute, University of Iceland Reykjavík

  • Höskuldsson Á, Sparks RSJ, Carrol MR (2006) Constraints on the dynamics of subglacial basalt eruptions from geological and geochemical observations at Kverkfjöll, NE-Iceland. Bull Volcanol 68:689–701. https://doi.org/10.1007/s00445-005-0043-4

    Article  Google Scholar 

  • Houvis N, Lea-Cox A, Turowski JM (2008) Recent volcano-ice interaction and outburst flooding in a Mars polar cap re-entrant. Icarus 197:23–38. https://doi.org/10.1016/j.icarus.2008.04.020

    Article  Google Scholar 

  • Hubbard A, Sugden D, Dugmore A, Norddahl H, Pétursson HG, (2006) A modelling insight into the Icelandic Last Glacial Maximum ice sheet. Quat Sci Rev 25(17–18):2283–2296.

  • Hungerford JDG, Edwards BR, Skilling IP, Cameron BI (2014) Evolution of a subglacial basaltic lava flow field: Tennena volcanic center, Mount Edziza volcanic complex, British Columbia, Canada. J Volcanol Geotherm Res 272:39–58. https://doi.org/10.1016/j.jvolgeores.2013.09.012

    Article  Google Scholar 

  • Jakobsson SP, Gudmundsson MT (2008) Subglacial and intraglacial volcanic formations in Iceland. Jökull 58:179–196

    Google Scholar 

  • Jonasson K (1994) Rhyolite volcanism in the Krafla central volcano, north-east Iceland. Bull Volcanol 56:516–528

    Article  Google Scholar 

  • Kennish MJ, Lutz RL (1998) Morphology and distribution of lava flows on mid-ocean ridges: a review. Earth Sci Rev 43:63–90. https://doi.org/10.1016/j.geomorph.2006.12.002

    Article  Google Scholar 

  • Komatsu G, Arzhannikov SG, Arzhannikova AV, Ershov K (2007) Geomorphology of subglacial volcanoes in the Azas Plateau, the Tuva Republic Russia. Geomorphology 888:312–328

    Article  Google Scholar 

  • Kralj P (2012) Facies architecture of the Upper Oligocene submarine Smrekovec stratovolcano, Northern Slovenia. J Volcanol Geotherm Res 247-248:122–138. https://doi.org/10.1016/j.jvolgeores.2012.07.016

    Article  Google Scholar 

  • Kuritani T, Yokoyama T, Kitagawa H, Kobayashi K, Nakamura E (2011) Geochemical evolution of historical lavas from Askja Volcano, Iceland: implications for mechanisms and timescales of magmatic differentiation. Geochem Cosmochim Acta 75:570–587. https://doi.org/10.1016/j.gca.2010.10.009

    Article  Google Scholar 

  • Lacasse C, Sigurdsson H, Carey SN, Johannesson H, Thomas LE, Rogers NW (2007) Bimodal volcanism at the Katla subglacial caldera, Iceland: insight into the geochemistry and petrogenesis of rhyolitic magmas. Bull Volcanol 69:373–399. https://doi.org/10.1007/s00445-006-0082-5

    Article  Google Scholar 

  • Loughlin SC (2002) Facies analysis of proximal subglacial and proglacial volcaniclastic successions at the Eyjafjallajökull. In: Smellie JL, Chapman MG (eds) Volcano-ice interaction on Earth and Mars. The Geological Society of London, London, pp 149–178

    Google Scholar 

  • Macdonald R, Sparks R, Sigurdsson H, Mattey D, McGarvie D, Smith R (1987) The 1875 eruption of Askja volcano, Iceland: combined fractional crystallization and selective contamination in the generation of rhyolitic magma. Mineral Mag 51:183–202. https://doi.org/10.1180/minmag.1987.051.360.01

    Article  Google Scholar 

  • Maicher D, White JDL, Batiza R (2000) Sheet hyaloclastite: density-current deposits of quench and bubble-burst fragments from thin, glassy sheet lava flows, Seamount Six, Eastern Pacific Ocean. Mar Geol 171:75–94. https://doi.org/10.1016/S0025-3227(00)00109-2

    Article  Google Scholar 

  • Martinez-Alonso S, Mellon MT, Banks MA, Keszthelyi LP, McEwen AS, The HiRISE Team (2011) Evidence of volcanic and glacial activity in Chryse and Acidalia Planitiae, Mars. Icarus 212:597–621. https://doi.org/10.1016/j.icarus.2011.01.004

    Article  Google Scholar 

  • McPhie J, Doyle MG, Allen CC (1993) Volcanic Textures: A guide to the interpretation of textures in volcanic rocks. CODES Key Centre, University of Tasmania Hobart, p 198

    Google Scholar 

  • Mercurio E (2011) Processes, products and depositional environments of ice-confined basaltic fissure eruptions: a case study of the Sveifluhals volcanic complex, SW Iceland. Unpublished dissertation. Department of Geology and Planetary Science, University of Pittsburgh

  • Parfitt EA, Gregg TKP, Smith D (2002) A comparison between subaerial and submarine eruptions at Kilauea Volcano, Hawaii: implications for the thermal viability of lateral feeder dikes. J Volcanol Geotherm Res 113:213–242. https://doi.org/10.1016/S0377-0273(01)00259-1

    Article  Google Scholar 

  • Pollock M, Edwards BR, Hauksdottir S, Alcorn R, Bowman L (2014) Geochemical and lithostratigraphic constrains on the formation of pillow-dominated tindars from Undirhlíðar quarry, Reykjanes Peninsula, southwest Iceland. Lithos 200-201:314–333. https://doi.org/10.1016/j.lithos.2014.04.023

    Article  Google Scholar 

  • Rivalta E, Dahm T (2006) Acceleration of buoyancy-driven fractures and magmatic dikes beneath the free surface. Geophys J Int 166:1424–1439. https://doi.org/10.1111/j.1365-246X.2006.02962.x

    Article  Google Scholar 

  • Russell JK, Edwards BR, Porritt LA (2013) Pyroclastic passage zones in glaciovolcanic sequences. Nat Commun 4:1788. https://doi.org/10.1038/ncomms2829

  • Russell JK, Edwards BR, Porritt LA, Ryane C (2014) Tuyas: a descriptive genetic classification. Quat Sci Rev 87:70–81. https://doi.org/10.1016/j.quascirev.2014.01.001

    Article  Google Scholar 

  • Ryane C, Edwards BR, Russell JK (2011) The volcanic stratigraphy of Kima’Kho Mountain: a Pleistocene tuya, northwestern British Columbia. In: Geological Survey of Canada Current Research Geological Survey of Canada, doi:https://doi.org/10.4095/289196

  • Sansone FJ, Smith JR (2006) Rapid mass wasting following nearshore submarine volcanism on Kilauea volcano, Hawaii. J Volcanol Geotherm Res 151:133–139. https://doi.org/10.1016/j.jvolgeores.2005.07.026

    Article  Google Scholar 

  • Schopka HH, Gudmundsson MT, Tuffen H (2006) The formation of Helgafell, southwest Iceland, a monogenetic subglacial hyaloclastite ridge: sedimentology, hydrology and volcano-ice interaction. J Volcanol Geotherm Res 152:359–377. https://doi.org/10.1016/j.jvolgeores.2005.11.010

    Article  Google Scholar 

  • Sigvaldason GE (1968) Structure and products of subaquatic volcanoes in Iceland. Contrib Mineral Petrol 18:1–16

    Article  Google Scholar 

  • Sigvaldason GE, Annertz K, Nilsson M (1992) Effect of glacier loading/deloading on volcanism: postglacial volcanic production rate of the Dyngjufjöll. Bull Volcanol 54:385–392

    Article  Google Scholar 

  • Skilling IP (1994) Evolution of an englacial volcano: Brown Bluff, Antarctica. Bull Volcanol 56:573–591

    Article  Google Scholar 

  • Skilling IP (2009) Subglacial to emergent basaltic volcanism at Hlöðufell, south-west Iceland: a history of ice-confinement. J Volcanol Geotherm Res 185:276–289. https://doi.org/10.1016/j.jvolgeores.2009.05.023

    Article  Google Scholar 

  • Skilling IP, White JDL, McPhie J (2002) Peperite: a review of magma-sediment mingling. J Volcanol Geotherm Res 114:1–17. https://doi.org/10.1016/S0377-0273(01)00278-5

    Article  Google Scholar 

  • Smellie JL (2006) The relative importance of supraglacial versus subglacial meltwater escape in basaltic subglacial tuya eruptions: an important unresolved conundrum. Earth-Sci Rev 74:241–268. https://doi.org/10.1016/j.earscirev.2005.09.004

    Article  Google Scholar 

  • Smellie JL (2008) Basaltic subglacial sheet-like sequences: evidence for two types with different implications for the inferred thickness of associated ice. Earth Sci Rev 88:60–88. https://doi.org/10.1016/j.earscirev.2008.01.004

    Article  Google Scholar 

  • Smellie JL, Hole MJ (1997) Products and processes in Pliocene-Recent, subaqueous to emergent volcanism in the Antarctic Peninsula: examples of englacial Surtseyan volcano construction. Bull Volcanol 58:628–646

    Article  Google Scholar 

  • Smellie JL, Wilch T, Rocchi A (2013) Aa lava-fed deltas: a new reference tool in paleoenvironmental research. Geology 41:403–406

  • Smellie JL, Johnson JS, McIntosh WC, Esser R, Gudmundsson MT, Hambrey MJ, van Wyk de Vries B (2008) Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula. Palaeogeogr Palaeoclimatol Palaeoecol 260:122–148. https://doi.org/10.1016/j.palaeo.2007.08.011

    Article  Google Scholar 

  • Stevenson JA, Smellie JL, McGarvie DW, Gilbert JS, Cameron BI (2009) Subglacial intermediate volcanism at Kerlingarfjöll, Iceland: magma-water interactions beneath thick ice. J Volcanol Geotherm Res 185:337–351. https://doi.org/10.1016/jvolgeores.2008.12.016

    Article  Google Scholar 

  • Strand K (1987) Models for the deposition and the role of external water in explosive volcanism of the Dyngjufjöll Late Pleistocene-Holocene central volcano complex in North Iceland. In: Nordic Volcanological Institute, University of Iceland Reykjavik

  • Stroncik N, Schmincke H-U (2002) Palagonite- a review. Int J Earch Sci (Geol Rundsch) 91:680–697. https://doi.org/10.1007/s00531-001-0238-7

    Article  Google Scholar 

  • Thorarinsson S, Sigvaldason G (1962) The eruption in Askja, 1961 a preliminary report. Am J Sci 260:641–651

    Article  Google Scholar 

  • Tucker DS, Scott KM (2009) Structures and facies associated with the flow of subaerial basaltic lava into a deep freshwater lake: the Sulphur Creek lava flow, North Cascades, Washington. J Volcanol Geotherm Res 185:311–322. https://doi.org/10.1016/j.jvolgeores.2008.11.028

    Article  Google Scholar 

  • Vezzoli LM, Hauser N, Omarini R, Mazzuoli R, Acocella V (2008) Non-explosive magma-water interaction in a continental setting: Miocene examples from the Eastern Cordillera. Bull Volcanol 71:509–532. https://doi.org/10.1007/s00445-008-0239-5

    Article  Google Scholar 

  • Walker GPL (1992) Morphometric study of pillow-size spectrum among pillow lavas. Bull Volcanol 54:459–474

    Article  Google Scholar 

  • Watton TJ, Jerram DA, Thordarson T, Davies RJ (2013) Three-dimensional lithofacies variations in hyaloclastite deposits. J Volcanol Geotherm Res 250:19–33. https://doi.org/10.1016/j.jvolgeores.2012.10.011

    Article  Google Scholar 

  • Werner R, Schmincke H-U (1999) Englacial vs lacustrine origin of volcanic table mountains: evidence from Iceland. Bull Volcanol 60:335–354

    Article  Google Scholar 

  • Werner R, Schmincke H-U, Sigvaldason GE (1996) A new model for the evolution of table mountains: volcanological and petrological evidence from Herdubreid and Herdubreidartögl volcanoes (Iceland). Geol Rundsch 85:390–397

    Article  Google Scholar 

  • White JDL (1996) Pre-emergent construction of a lacustrine basaltic volcano, Pahvant Butte, Utah (USA). Bull Volcanol 58:249–262

    Article  Google Scholar 

  • White JDL (2000) Subaqueous eruption-fed density currents and their deposits. Precambrain Res 101:87–109. https://doi.org/10.1016/S0301-9268(99)00096-0

    Article  Google Scholar 

  • White JDL, McPhie J, Skilling IP (2000) Peperite: a useful genetic term. Bull Volcanol 62:65–66

    Article  Google Scholar 

  • Wood DA (1976) Spatial and temporal variation in the trace element geochemistry of the eastern Iceland flood basalt succession. J Geophys Res 81(23):4353–4360

    Article  Google Scholar 

  • Wood DA (1978) Major and trace element variations in the Tertiary lavas of eastern Iceland and their significance with respect to the Iceland geochemical anomaly. J Petrol 19(3):393–436

    Article  Google Scholar 

Download references

Acknowledgments

Our gratitude goes to Haskolí Islands, NORVOLK, and the Vatnajökull National Park, for field logistics and permits. Field assistance from Robin Wham, Rachel Lee, Antonia Lema, Kevin Reath, and Mary Kate Ellis was invaluable. Comments by K. Russell, an anonymous reviewer, and the editors greatly improved the manuscript.

Funding

This work was made possible by a National Science Foundation grant to IPS, DMcG, and AH (Award number 0910526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Graettinger.

Additional information

Editorial responsibility: R.J. Brown

Electronic supplementary material

ESM 1

(DOCX 819 kb)

ESM 2

(XLSX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graettinger, A.H., McGarvie, D.W., Skilling, I.P. et al. Ice-confined construction of a large basaltic volcano—Austurfjöll massif, Askja, Iceland. Bull Volcanol 81, 9 (2019). https://doi.org/10.1007/s00445-019-1269-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-019-1269-x

Keywords

Navigation