Skip to main content

Understanding eruptive style variations at calc-alkaline volcanoes: the 1913 eruption of Fuego de Colima volcano (Mexico)

Abstract

The 1913 sub-Plinian eruption of Fuego de Colima volcano (Mexico) occurred after almost 100 years of effusive and (minor) Vulcanian explosive activity, which modulated dome growth and destruction. Dome extrusion persisted from 1869 to 1913. The transition to explosive eruption started on 17 January 1913, and it progressed in three phases: (1) opening, with the generation of block-and-ash flows, (2) vent clearing, with strong explosions that destroyed the summit dome and decompressed the magmatic system, and (3) sustained column (sub-Plinian fallout) with final collapse producing pyroclastic density currents. Because of this succession of events, the 1913 activity represents an excellent case-study for investigating the eruptive style changes at calc-alkaline volcanoes. We investigated the conditions that led to eruptive style transition from effusive (dome growth) to explosive (the final sub-Plinian fallout) through steady-state numerical simulations, using subsurface data and independently inferred (from volcanological data) mass discharge rates as constraints. Results show good matches for hybrid geometrical settings of the shallow conduit-feeding system (i.e., dyke developing into a shallower cylindrical conduit), and the magma chamber top at 6 km of depth. The fragmentation level was shallower than 2 km, as inferred from the lithics contained in the sub-Plinian fall deposits of Phase (3). The most likely solution is represented by a dyke having major axis between 200 and 2000 m and the minor axis of 40 m. The dyke-cylinder transition was set at a depth of 500 m, with a cylinder diameter of 40 m. It emerges that at least two main mechanisms may be responsible for the effusive to explosive transition that led to the Phase (3) of the 1913 eruption: (i) an increase in magma chamber overpressure (magmatic triggering) or (ii) decrease of lithostatic stress acting on the volcano (non-magmatic triggering). The former implies arrival into the magma chamber of a batch of fresh magma, which can have volume between 10 and 200 × 106 m3, depending on the values of magma and host rock compressibility. The latter requires decompression-induced emptying of at least the equivalent of 1000 m of the magma column to produce the necessary unloading of the conduit-feeding system. A sudden jerk in the lateral spreading of the Fuego de Colima cone would be a reliable mechanism for decompressing the upper conduit and driving fragmentation processes over a time period of few hours. The results are not conclusive on an internal (magma chamber overpressure), external (lowering of lithostatic load), or mixed (internal and external) trigger of the observed eruptive style transition. This work highlights how different processes can have non-linear cascade effects on close-to-equilibrium volcanic systems like Fuego de Colima volcano.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abe K (1981) Magnitudes of large shallow earthquakes from 1904 to 1980. Phys Earth Planet Inter 27(1):72–92

    Google Scholar 

  • Acocella V, Behncke B, Neri M, D'Amico S (2003) Link between major flank slip and 2002–2003 eruption at Mt. Etna (Italy). Geophys Res Lett 30(24)

  • Acocella V, Neri M, Behncke B, Bonforte A, Del Negro C, Ganci G (2016) Why does a mature volcano need new vents? The case of the new southeast crater at Etna. Front Earth Sci 4:67

    Google Scholar 

  • Alvarez R, Yutsis V (2015) Southward migration of magmatic activity in the Colima volcanic complex, Mexico: an ongoing process. Intern J Geosc 6:1077–1099

    Google Scholar 

  • Amoruso A, Crescentini L (2009) Shape and volume change of pressurized ellipsoidal cavities from deformation and seismic data. J Geophys Res 114:B02210

    Google Scholar 

  • Anderson K, Segall P (2011) Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes. J Geophys Res 116(B7)

  • Anderson K, Segall P (2013) Bayesian inversion of data from effusive volcanic eruptions using physics-based models: application to Mount St. Helens 2004–2008. J Geophys Res 118(B5):2017–2037

    Google Scholar 

  • Andrew REB, Gudmundsson A (2007) Distribution, structure, and formation of Holocene lava shields in Iceland. J Volcanol Geotherm Res 168:137–154

    Google Scholar 

  • Atlas ZD, Dixon JE, Sen G, Finny M, Martin Del Pozzo AL (2006) Melt inclusions from Volcán Popocatépetl and Volcán de Colima, Mexico: melt evolution due to vapor-saturated crystallization during ascent. J Volcanol Geotherm Res 153:221–240

    Google Scholar 

  • Barberi F, Cioni R, Santacroce R, Sbrana A, Vecci R (1989) Magmatic and phreatomagmatic phases in explosive eruptions of Vesuvius as deduced by grain-size and component analysis of the pyroclastic deposits. J Volcanol Geotherm Res 38:287–307

    Google Scholar 

  • Battino R, Clever HL (1966) The solubility of gases in liquids. Chem Rev 66(4):395–463

    Google Scholar 

  • Belousov A, Voight B, Belousova M (2007) Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits. Bull Volcanol 69(7):701–740

    Google Scholar 

  • Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418. https://doi.org/10.1130/G32769.1

    Google Scholar 

  • Bonadonna C, Biass S, Costa A (2015) Physical characterization of explosive volcanic eruptions based on tephra deposits: propagation of uncertainties and sensitivity analysis. J Volcanol Geotherm Res 296:80–100

    Google Scholar 

  • Bonasia R, Capra L, Costa A, Macedonio G, Saucedo R (2011) Tephra fallout hazard assessment for a Plinian eruption scenario at Volcan de Colima. J Volcanol Geotherm Res 203:12–22

    Google Scholar 

  • Brèton-Gonzalez M, Ramirez JJ, Navarro C (2002) Summary of the historical eruptive activity of Volcan de Colima, Mexico 1519-2000. J Volcanol Geotherm Res 117:21–46

    Google Scholar 

  • Cabrera-Gutiérrez R, Espíndola JM (2010) The 1998-1999 eruption of Volcán de Colima, Mexico: an application of Maeda’s viscoelastic model. Geofis Int 49(2):83–96

    Google Scholar 

  • Campbell ME, Russell J, Porrit LA (2013) Thermomechanical milling of accessory lithics in volcanic conduits. Earth Planet Sci Lett 377-378:276–286

    Google Scholar 

  • Carmichael ISE (2002) The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99°W) Mexico. Contibutions Mineral Petrol 143:641–663

    Google Scholar 

  • Cimarelli C, Costa A, Mueller S, Mader HM (2011) Rheology of magmas with bimodal crystal size and shape distributions: insights from analog experiments. Geochem Geophys Geosyst 12(7):G07024. https://doi.org/10.1029/2011GC003606

    Google Scholar 

  • Capra L, Macías JL, Cortés A, Dávila N, Saucedo R, Osorio-Ocampo S, Arce JL, Galvilanes-Ruiz JC, Corona-Càvez P, Gàrcia-Sancez L, Sosa-Ceballos G, Vasquez R (2016) Preliminary report on the July 10–11, 2015 eruption at Volcán de Colima: pyroclastic density currents with exceptional runouts and volume. J Volcanol Geotherm Res 310:39–49

    Google Scholar 

  • Crummy JM, Savov IP, Navarro-Ochoa C, Morgan D, Wilson M (2014) High-K mafic Plinian eruptions of Volcan de Colima, Mexico. J Petrol 55(11):2155–2192

    Google Scholar 

  • Colucci S, de’Michieli Vitturi M, Neri A, Palladino DM (2014) An integrated model of magma chamber, conduit and column for the analysis of sustained explosive eruptions. Earth Planet Sci Lett 404:98–110

    Google Scholar 

  • Connor CB, Connor LJ, Bonadonna C, Luhr JF, Savov I, Navarro-Ochoa C (2016) Modeling tephra thickness and particle size distribution of the 1913 eruption of Volcan de Colima. Mexico In press

  • Cortes A, Macìas JL, Capra L, Garduño-Monroy VH (2010) Sector collapse of the SW flank of Volcán de Colima, México. The 3600 yr BP La Lumbre-Los Ganchos debris avalanche and associated debris flows. J Volcanol Geotherm Res 197:52–66

    Google Scholar 

  • Costa A, Macedonio G (2005) Viscous heating effects in fluids with temperature-dependent viscosity: triggering of secondary flows. J Fluid Mech 540:21–38

    Google Scholar 

  • Costa A, Melnik O, Sparks RSJ (2007a) Controls of conduit geometry and wall-rock elasticity on lava dome eruptions. Earth Planet Sci Lett 260:137–151

    Google Scholar 

  • Costa A, Melnik O, Sparks RSJ, Voight B (2007b) Control of magma flow in dykes on cyclic lava dome extrusion. Geophys Res Lett 34(2)

  • Costa A, Melnik O, Vedeneeva E (2007c) Thermal effects during magma ascent in conduits. J Geophys Res 112:B12205

    Google Scholar 

  • Costa A, Sparks RSJ, Macedonio G, Melnik O (2009a) Effects of wall-rock elasticity on magma flow in dykes during explosive eruptions. Earth Planet Sci Lett 288:455–462

    Google Scholar 

  • Costa A, Caricchi L, Bagdassarov N (2009b) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophys Geosyst 10:Q03010

    Google Scholar 

  • Costa A, Gottsmann J, Melnik O, Sparks RSJ (2011) A stress-controlled mechanism for the intensity of very large magnitude explosive eruptions. Earth Planet Sci Lett 310:161–166

    Google Scholar 

  • De la Cruz-Reyna S (1993) Random patterns of activity of Colima Volcano, Mexico. J Volcanol Geotherm Res 55:51–68

    Google Scholar 

  • Diaz S (1906) Efemerides del Volcán de Colima, observaciones diarias desde los Observatorios de Zapotlan y Colima de 1893 a 1905. Sria De Fomento

  • Dobran F (1992) Non-equilibrium flow in volcanic conduits and application to the eruptions of Mt. St. Helens on May 18, 1980 and Vesuvius in AD 79. J Volcanol Geotherm Res 49:285–311

    Google Scholar 

  • Eichelberger JC, Izebkov PE (2000) Eruption of andesite triggered by dyke injection: contrasting cases at Karymsky Volcano, Kamchatka and Mt Katmai, Alaska. Philos Trans R Soc Lond 358:1465–1485

    Google Scholar 

  • García-Pérez F, Urrutia-Fucugauchi J (1997) Crustal structure of the Arteaga Complex, Michoacán, southern Mexico, from gravity and magnetics. Geof Intern Mexico 36:235–244

    Google Scholar 

  • Gavilanes-Ruiz JC, Cuevas-Muñiz A, Varley N, Gwynne G, Stevenson J, Saucedo-Girón R, Pérez-Pérez A, Aboukhalil M, Cortés-Cortés A (2009) Exploring the factors that influence the perception of risk: the case of Volcán de Colima, Mexico. J Volcanol Geotherm Res 186:238–252

    Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134. https://doi.org/10.1016/j.epsl.2008.03.038

    Google Scholar 

  • Gudmundsson A, Brenner S (2005) On the conditions of sheet injections and eruptions in stratovolcanoes. Bull Volcanol 67(8):768–782. https://doi.org/10.1007/s00445-005-0433-7

    Google Scholar 

  • Gudmundsson A, Philipp SL (2006) How local stress fields prevent volcanic eruptions. J Volcanol Geotherm Res 158:257–268

    Google Scholar 

  • Gudmundsson A (2012) Strengths and strain energies of volcanic edifices: implications for eruptions, collapse calderas, and landslides. Nat Hazards Earth Syst Sci 12(7):2241–2258

    Google Scholar 

  • Hildreth W, Fierstein J (2000) Katmai volcanic cluster and the great eruption of 1912. Geol Soc Am Bull 112(10):1594–1620

    Google Scholar 

  • Huppert HE, Woods AW (2002) The role of volatiles in magma chamber dynamics. Nature 420:493–495

    Google Scholar 

  • Jaupart C, Allègre CJ (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102(3–4):413–429

    Google Scholar 

  • Lavallée Y, Varley N, Alatorre-Ibargüengoitia MA, Hess KU, Kueppers U, Mueller S, Richard D, Scheu B, Spieler O, Dingwell DB (2012) Magmatic architecture of dome-building eruptions at Volcan de Colima (Mexico). Bull Volcanol 74(1):249–260

    Google Scholar 

  • Luhr JF, Carmichael IS (1980) The Colima volcanic complex, México: part I. Postcaldera andesites from Volcán Colima. Contrib Mineral Petrol 76:127–147

    Google Scholar 

  • Luhr JF, Carmichael IS (1981) The Colima volcanic complex, Mexico: part II. Late-quaternary cinder cones. Contrib Mineral Petrol 76:76–127

    Google Scholar 

  • Luhr JF, Carmichael ISE (1990) Petrological monitoring of cyclical eruptive activity at Volcán Colima, México. J Volcanol Geotherm Res 42:235–260

    Google Scholar 

  • Luhr JF (2002) Petrology and geochemistry of the 1991 and 1998-1999 lava flows from Volcan Colima. Mexico J Volcanol Geotherm Res 117:169–194

    Google Scholar 

  • Luhr JF, Navarro C, Connor CB, and Connor LJ (2006) The 1913 VEI–4 Plinian eruption of Volcan Colima, Mexico: Tephrochronology, petrology, and plume modeling. In Eos, Transactions of the American Geophysical Union 52, V43B–1786, San Francisco, CA

  • Lundgren P, Casu F, Manzo M, Pepe A, Berardino P, Sansosti E, Lanari R (2004) Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry. Geophys Res Lett 31(4)

  • Macedonio G, Dobran F, Neri A (1994) Erosion processes in volcanic conduits and application to the AD79 eruption of Vesuvius. Earth Planet Sci Lett 121:137–152

    Google Scholar 

  • Macedonio G, Neri A, Martì J, Folch A (2005) Temporal evolution of flow conditions in sustained magmatic explosive eruptions. J Volcanol Geotherm Res 143:153–172

    Google Scholar 

  • Macìas J, Arce J, Sosa G, Gardner JE, Saucedo R (2017) Storage conditions and magma processes triggering the 1818CE Plinian eruption of Volcán de Colima. J Volcanol Geotherm Res 340:117–129. https://doi.org/10.1016/j.jvolgeores.2017.02.025

    Google Scholar 

  • Maccaferri F, Bonafede M, Rivalta E (2011) A quantitative study of the mechanisms governing dike propagation, dike arrest and sill formation. J Volcanol Geotherm Res 208:39–50

    Google Scholar 

  • Martel C, Poussineau S (2007) Diversity of eruptive styles inferred from the microlites of Mt Pelee andesite (Martinique, Lesser Antilles). J Volcanol Geotherm Res 166(3–4):233–254

    Google Scholar 

  • Massaro S, Sulpizio R, Costa A (2018) Evolution of magma feeding system during a Plinian eruption: the case of Pomici di Avellino eruption of Somma-Vesuvius, Italy. Earth Planet Sci Lett 482:545–555

    Google Scholar 

  • Massaro S (2018) Investigation on physical mechanisms driving eruptive style transitions by means of geological data and geophysical modeling. Unpublished PhD Thesis, University of Bari

  • Mastin LG, Guffanti M, Servranck R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186:10–12

    Google Scholar 

  • Medina-Martinez F (1983) Analysis of the eruptive history of the Volcán de Colima, Mexico (1560–1980). Geof Intern 22:157–178

    Google Scholar 

  • Melnik O, Sparks RSJ (1999) Non-linear dynamics of lava dome extrusion. Nature 402:37–41

    Google Scholar 

  • Melnik O (2000) Dynamics of two-phase conduit flow of high-viscosity gas-saturated magma: large variations of sustained explosive eruption intensity. Bull Volcanol 62:153–170

    Google Scholar 

  • Melnik O, Sparks RSJ (2002) Dynamics of magma ascent and lava extrusion at Soufrière Hills Volcano, Montserrat, in The Eruption of the Soufrière Hills Volcano, Montserrat From 1995 to 1999, edited by TH. Druitt and BP Kokelaar. Mem Geol Soc Lond 21:153–171

    Google Scholar 

  • Melnik O, Sparks RSJ (2005) Controls on conduit magma flow dynamics during lava dome building eruptions. J Geophys Res 110:B02209

    Google Scholar 

  • Melnik O, Sparks RSJ, Costa A, Barmin A (2008) Volcanic eruptions: cyclicity during lava dome growth. In: Encyclopedia of complexity and systems science, Meyers

  • Melnik O, Costa A (2014) Dual-chamber-conduit models of non-linear dynamics behavior at Soufriere Hills Volcano, Montserrat. The Eruption of Soufriere Hills Volcano, Montserrat from 2000 to 2010. Geol Soc London Mem 39:61–69

    Google Scholar 

  • Mériaux C, Jaupart C (1995) Simple fluid dynamic models of volcanic rift zones. Earth Planet Sci Lett 136(3–4):223–240

    Google Scholar 

  • Moore GM, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130:304–319

    Google Scholar 

  • Mora JC, Macías JL, Saucedo R, Orlando A, Manetti P, Vaselli O (2002) Petrology of the 1998-2000 products of Volcán de Colima, México. J Volcanol Geotherm Res 117:195–212. https://doi.org/10.1016/S0377-0273(02)00244-5

    Google Scholar 

  • Muskhelishvili N (1963) Some basic problems in the mathematical theory of elasticity. Noordhof, Leiden, The Netherlands

  • Nakada S, Shimizu H, Ohta K (1999) Overview of the 1990–1995 eruption at Unzen Volcano. J Geophys Res 89:1–22

    Google Scholar 

  • Navarro C, Cortes A (1993) Eruptive behavior of Colima volcano previous to Pelean- type eruptions with presence of active domes at the summit during XIX & XX centuries. An evaluation of its volcano hazard. Abstracts, first international workshop on environmental volcanology, 6, 15–17 November, Morelia Michoacan, Mexico

  • Neri M, Acocella V, Behncke B (2004) The role of the Pernicana fault system in the spreading of Mt. Etna (Italy) during the 2002–2003 eruption. Bull Volcanol 66(5):417–430

    Google Scholar 

  • Nicholson RS, Gardner JE, Neal CA (2011) Variations in eruption style during the 1931 a.D. eruption of Aniakchak volcano, Alaska. J Volcanol Geotherm Res 207:69–82

    Google Scholar 

  • Norini G, Capra L, Groppelli G, Agliardi F, Pola A, Cortes A (2010) Structural architecture of the Colima volcanic complex. J Geophys Res 115:B12209

    Google Scholar 

  • Núnez-Cornú F, Nava FA, De la Cruz-Reyna S, Jiménez Z, Valencia C, García-Arthur R (1994) Seismic activity related to the 1991 eruption of Colima Volcano, Mexico. Bull Volcanol 56:228–237

    Google Scholar 

  • Ortiz SG (1944) La Zona volcanica Colima del Estado de Jalisco. Publicaciones de la Universidad de Guadalajara. Guadalajara, Mexico

    Google Scholar 

  • Paıdoussis MP (2006) Wave propagation in physiological collapsible tubes and a proposal for a Shapiro number. J Fluids Struct 22:721–725

    Google Scholar 

  • Pinel V, Jaupart C (2005) Some consequences of volcanic edifice destruction for eruption conditions. J Volcanol Geotherm Res 145(1):68–80

    Google Scholar 

  • Plateaux R, Béthoux N, Bergerat F, Mercier de Lépinay B (2014) Volcano-tectonic interactions revealed by inversion of focal mechanisms: stress field insight around and beneath the Vatnajökull ice cap in Iceland. Front Earth Sci 2:9. https://doi.org/10.3389/feart.2014.00009

    Google Scholar 

  • Preece K, Gertisser R, Barclay J, Charbonnier SJ, Komorowski JC, Herd RA (2016) Transitions between explosive and effusive phases during the cataclysmic 2010 eruption of Merapi volcano, Java, Indonesia. Bull Volcanol 78:54

    Google Scholar 

  • Poland MP, Peltrier A, Bonforte A, Puglisi G (2017) The spectrum of persistent volcanic flank instability: a review and proposed framework based on Kilauea, Piton de la Fournaise, and Etna. J Volcanol Geotherm Res 339:63–80

    Google Scholar 

  • Reid ME, Keith TE, Kayen RE, Iverson NR, Iverson RM, Brien DL (2010) Volcano collapse promoted by progressive strength reduction: new data from Mount St. Helens. Bull Volcanol 72(6):761–766

    Google Scholar 

  • Reubi O, Blundy J (2008) Assimilation of plutonic roots, formation of high-K ‘exotic’melt inclusions and genesis of andesitic magmas at Volcán de Colima, Mexico. J Petrology 49(12):2221–2243

  • Ripepe M, Bonadonna C, Folch A, Delle Donne D, Lacanna G, Marchetti E, Höskuldsson A (2013) Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: the 2010 Eyjafjallajökull eruption. Earth Planet Sci Lett 366:112–121

    Google Scholar 

  • Rivalta E, Segall P (2008) Magma compressibility and the missing source for some dike intrusions. Geophys Res Lett 35:L04306. https://doi.org/10.1029/2007GL032521

    Google Scholar 

  • Rivalta E (2010) Evidence that coupling to magma chambers controls the volume history and velocity of laterally propagating intrusions. J Geophys Res 115:B07203

    Google Scholar 

  • Rivalta E, Taisne B, Bunger AP, Katz R (2015) A review of mechanical models of dike propagation: schools of thought, results and future directions. Tectonophysics 638:1–42

    Google Scholar 

  • Roverato M, Capra L, Sulpizio R, Norini G (2011) Stratigraphic reconstruction of two debris avalanche deposits at Colima Volcano (Mexico): insights into pre-failure conditions and climate influence. J Volcanol Geotherm Res 207(1):33–46

    Google Scholar 

  • Rubin AM (1995) Propagation of magma-filled cracks. Ann Rev Planet Sci 23:287–336

    Google Scholar 

  • Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J Geophys Res 98:19667–19685

    Google Scholar 

  • Salzer JT, Nikkhoo M, Walter T, Sudhaus H, Reyes-Dàvila G, Bretòn-Gonzalez M, Aràmbula R (2014) Satellite radar data reveal short-term pre-explosive displacements and a complex conduit system at Volcan de Colima, Mexico. Front Earth Sci 2:12

    Google Scholar 

  • Scandone R, Cashman KV, Malone SD (2007) Magma supply, magma ascent and style of volcanic eruption. Earth Planet Sc Lett 253:513–529. https://doi.org/10.1016/j.epsl.2006.11.016

    Google Scholar 

  • Shapiro AH (1977) Steady flow in collapsible tubes. J Biomech Eng 99:126–147

    Google Scholar 

  • Savov IP, Luhr JF, Navarro-Ochoa C (2008) Petrology and geochemistry of lava and ash erupted from Volcan Colima, Mexico, during 1998-2005. J Volcanol Geotherm Res 174:241–256

    Google Scholar 

  • Saucedo R, Macìas JL, Sheridan MF, Bursik MI, Komorowski JC (2005) Modeling of pyroclastic flows of Colima Volcano, Mexico: implications for hazard assessment. J Volcanol Geotherm Res 139(1–2):103–115

    Google Scholar 

  • Saucedo R, Macías J, Gavilanes JC, Arce JL, Komorowski JC, Gardner JE, Valdez-Moreno G (2010) Eyewitness, stratigraphy, chemistry, and eruptive dynamics of the 1913 Plinian eruption of Volcán de Colima. México. J Volcanol Geotherm Res 191:149–166

    Google Scholar 

  • Saucedo R, Macìas JL, Gavilanes JC, Arce JL, Komorowski JC, Gardner JE, Valdez-Moreno G (2011) Corrigendum to eyewitness, stratigraphy, chemistry, and eruptive dynamics of the 1913 plinian eruption of Volcan de Colima, Mexico. J Volcanol Geotherm Res 191:149–166

    Google Scholar 

  • Sigmarsson O, Vlastelic I, Andreasen R, Bindeman I, Devidal JL, Moune S, Thordarson T (2011) Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption. Solid Earth 2(2):271–281

    Google Scholar 

  • Sigmundsson F, Hreinsdóttir S, Hooper A, Arnadóttir T, Pedersen R, Roberts MJ, Geirsson H (2010) Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 468(7322):426–430

    Google Scholar 

  • Smith VC, Shane P, Nairn IA (2004) Reactivation of a rhyolitic magma body by new rhyolitic intrusion before the 15.8 ka Rotorua eruptive episode: implications for magma storage in the Okataina Volcanic Centre, New Zealand. J Geol Soc 161(5):757–772

    Google Scholar 

  • Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37

    Google Scholar 

  • Sparks RSJ, Young SR (2002) The eruption of Soufrière Hills volcano, Montserrat (1995–1999): overview of scientific results, in the eruption of the Soufrière Hills volcano, Montserrat from 1995 to 1999, edited by TH Druitt and BP Kokelaar. Mem Geol Soc Lond 21:45–69

    Google Scholar 

  • Spica Z, Perton M, Legrand D (2017) Anatomy of the Colima volcano magmatic system, Mexico. Earth Planet Sci Lett 459:1–13

    Google Scholar 

  • Spera F (2000) Physical properties of magma, in Encyclopedia of Volcanoes, edited by H. Sigurdsson, pp. 171–190, Academic, San Diego, Calif

  • Sulpizio R, Zanella E, Macías JL, Saucedo R (2015) Deposit temperature of pyroclastic density currents emplaced during the El Chichón 1982 and Colima 1913 eruptions. Geol Soc Lond Spec Publ 396(1):35–49

    Google Scholar 

  • Sulpizio R, Lucchi F, Forni F, Massaro S, Tranne C (2016) Unravelling the effusive-explosive transitions and the construction of a volcanic cone from geological data: the example of Monte dei Porri, Salina Island (Italy). J Volcanol Geotherm Res 327:1–22

    Google Scholar 

  • Sulpizio R, Massaro S (2017) Influence of stress field changes on eruption initiation and dynamics: a review. Front Earth Sci 03. https://doi.org/10.3389/feart.2017.00018

  • Suter M, Martínez MC, Martínez ML, Farrar E (1995) The Aljibes half-graben. Active extension at the boundary between the trans-Mexican volcanic belt and the basin and Range Province, Mexico. GSA Bull 107(6):627–641

    Google Scholar 

  • Swanson D, Holcomb RT (1999) Regularities in growth of the Mount St. Helens dacite dome 1980–1986. In: Fink JH (ed) Lava flows and domes: emplacement mechanisms and hazards implications. Springer Verlag, Berlin, pp 3–24

    Google Scholar 

  • Touloukian YS, Judd WR, Roy RF (1989) Physical properties of rocks and minerals, 548. Hemisphere, New York

    Google Scholar 

  • Urbina F, Camacho H (1913) La zona megaséismica Acambay-Tixmadeje, estado de México: conmovida el 19 de noviembre de 1912 (Vol. 32). Imprenta y fototipia de la Secretaría de fomento

  • Varekamp JC (1993) Some remarks on volcanic vent evolution during plinian eruptions. J Volcanol Geotherm Res 54:309–318

    Google Scholar 

  • Vargas-Bracamontes DM, Alejandro Nava F, Reyes-Dávila Gabriel A (2009) Time-scale wavelet patterns related to the 1998–1999 eruptions of the Colima volcano, and their possible implications for eruption forecasting. J Volcanol Geotherm Res 184:271–284

    Google Scholar 

  • Voight B, Linde AT, Sacks IS, Mattioli GS, Sparks RSJ, Elsworth D, Young SR (2006) Unprecedented pressure increase in deep magma reservoir triggered by lava-dome collapse. Geophys Res Lett 33(3)

  • Waitz P (1915) El estado actual de los volcanes de Mexico y la ultima erupcion del Volcan de Colima (1913). Revista Volcanologica:259–268

  • Walter TR, Amelung F (2007) Volcanic eruptions following M≥ 9 megathrust earthquakes: implications for the Sumatra-Andaman volcanoes. Geology 35(6):539–542

    Google Scholar 

  • Walter TR (2011) Structural architecture of the 1980 Mount St. Helens collapse: an analysis of the Rosenquist photo sequence using digital image correlation. Geology 39(8):767–770

    Google Scholar 

  • Watt SFL, Pyle DM, Mather TA (2009) The influence of great earthquakes on volcanic eruption rate along the Chilean subduction zone. Earth Planet Sci Lett 277:399–407

    Google Scholar 

  • Williams SN, Self S (1983) The October 1902 plinian eruption of Santa Maria volcano, Guatamala. J Volcanol Geotherm Res 16:33–56

    Google Scholar 

  • Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions - IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys J Astr Soc 63:174–148

    Google Scholar 

  • Wylie JJ, Voight B, Whitehead JA (1999) Instability of magma flow from volatile dependent viscosity. Science 285:1883–1885

    Google Scholar 

  • Woods AW, Koyaguchi T (1994) Transitions between explosive and effusive eruptions of silicic magmas. Letters to Nature 370:641–644

    Google Scholar 

  • Woods AW, Cowan A (2009) Magma mixing triggered during volcanic eruptions. Earth Planet Sci Lett 288:132–137

    Google Scholar 

  • Yagi Y, Mikumo T, Pacheco J, Reyes G (2004) Source rupture process of the Tecomán, Colima, Mexico earthquake of 22 January 2003, determined by joint inversion of teleseismic body-wave and near-source data. Bull Seismol Soc Am 94(5):1795–1807

    Google Scholar 

  • Young T (1808) Hydraulic investigations, subservient to an intended Croonian Lecture on the motion of the blood. Philos Trans R Soc Lond 98:164–186

    Google Scholar 

  • Zellmer G, Annen C (2014) An introduction to magma dynamics. Dynamics of crustal magma transfer, storage and differentiation. Annen C and Zellmer G (eds), Geol Soc London spec. Public 304:1–13

    Google Scholar 

  • Zobin VM, Gonzalez Amezcua M, Reyes Davila GA, Dominguez T, Cerda Chacon JC, Chavez Alvarez JM (2002) Comparative characteristics of the 1997-1998 seismic swarms preceding the November 1998 eruption of Volcan de Colima, Mexico. J Volcanol Geotherm Res 117:47–60

    Google Scholar 

  • Zamora-Camacho A, Espíndola JM, Reyes-Dávila G (2007) The 1997–1998 activity of Volcán de Colima, Western Mexico: some aspects of the associated seismic activity. Pure Appl Geophys 164:39–52

    Google Scholar 

Download references

Acknowledgements

We wish to thank the Editor A. Harris, the Associate Editor R. Cioni and two anonymous reviewers for the suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Massaro.

Additional information

Editorial responsibility: R. Cioni

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Massaro, S., Sulpizio, R., Costa, A. et al. Understanding eruptive style variations at calc-alkaline volcanoes: the 1913 eruption of Fuego de Colima volcano (Mexico). Bull Volcanol 80, 62 (2018). https://doi.org/10.1007/s00445-018-1235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-018-1235-z

Keywords

  • Eruption dynamics
  • Effusive-explosive transition
  • Conduit-feeding system
  • Volcano spreading
  • Magma-rock interaction
  • Steady-state numerical model