Effects of the Karacadag Volcanic Complex on the thermal structure and geothermal potential of southeast Anatolia

Abstract

The Karacadag Volcanic Complex (KVC) is the largest volcanic unit in SE Turkey. It is also defined as a shield volcano on the northernmost part of the Arabian Plate. The main goal of this study is to investigate the geothermal potential of this region associated with the magnetic signature of this volcanic complex and surrounding area. Besides this primary objective, the possibility of there being volcanic intrusion into the buried fault zones under the volcanic cover are also investigated to determine the interrelations between the active tectonics and heat flow in the area. A spectral analysis method is applied to the magnetic anomalies of the volcanic rocks to identify the Curie point depth (CPD) and geothermal gradient, as well as to estimate heat flow and radiogenic heat production of radioactive minerals in the complex. A tilt angle map is also presented, in correlation with instrumentally recorded earthquake magnitudes, to indicate tectonic trends that are consistent with the maps of the thermal parameters in this study. In contrast with expectations for the KVC area, the region around Akcakale and Suruc Grabens is the most prolific zone for geothermal potential, despite them not showing strong magnetic anomalies. Curie point depths are shallow, down to 18 km, around the Akcakale Graben, and deeper, down to 22 km, around the Bitlis-Zagros Suture Zone where the geothermal gradients increase from 26 to 32 °C km−1 through the graben area. Heat flows in this zone are in the range from 75 to 90 mW m−2 depending on the thermal conductivity coefficient (2.3, 2.5, 2.7, and 3.0 W m−1 K−1) used. Radiogenic heat production values also indicate slightly changing spectra in the range 0.19 to 0.25 μW m−3). None of these parameters are focused around Mt. Karacadag. However, the earthquake epicenters (generally M ≤ 4) are aligned with the boundary faults of the Akcakale Graben where the CPD, geothermal gradient, and heat flow maps indicate relatively high potential. We thus suggest that this graben area would be good for future geothermal exploration. On the contrary, considering the low geothermal gradient and heat flow values, Mt. Karacadag can be accepted as being an extinct volcano, despite its apparent, high, magnetic anomalies.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abraham EM, Lawal KM, Ekwe AC, Alile O, Murana KA, Lawal AA (2014) Spectral analysis of aeromagnetic data for geothermal energy investigaton of Ikogosi warm spring-Ekiti SState, southwestern Nigeria. Geotherm Energ 2:1–21

    Article  Google Scholar 

  2. Arnadottir, T, Lund B, Jiang W, Geirsson H, Sturkell E, Sigmundsson F, Einarsson P, Sigurdsson T (2007). Rapid uplift and plate spreading observed by GPS in Iceland. In: Geophys. Res. Abstracts 9, EGU2007-A-07053

  3. Arnorsson A, Thorhallsson S, Stefansson A (2015). Utilization of geohtermal resources. In: Sigurdsson H, Houghton B, McNutt S, Rymer H. Stix J. (Eds.) Encyclopedia of volcanoes: 1235–1252

  4. Artemieva IM, Money WD (2001) Thermal thickness and evolution of Precambrian lithosphere. J Geophys Res 106:16387–16414

    Article  Google Scholar 

  5. Ates A, Bilim F, Buyuksarac A, Aydemir A, Bektas O, Aslan Y (2012) Crustal structure of Turkey from aeromagnetic, gravity and deep seismic reflection data. Surv Geophys 33:869–885

    Article  Google Scholar 

  6. Aubert M (1999) Practical evaluation of steady heat discharge from dormant active volcanoes: case study of Vulcarolo fissure (Mount Etna, Italy). J Volcanol Geotherm Res 92:413–429

    Article  Google Scholar 

  7. Aydemir A (2009) Tectonic investigation of central Anatolia, Turkey, using geophysical data. J Appl Geophys 68:321–334

    Article  Google Scholar 

  8. Aydemir A, Bilim F, Cifci G, Okay S (2018) Modeling of the Foca-Uzunada magnetic anomaly and thermal structure in the gulf of Izmir, western Turkey. J Asian Earth Sci 156:288–301

    Article  Google Scholar 

  9. Baker ET, Urabe T (1996) Extensive distribution of hydrothermal plumes along the superfast spreading East Pacific Rise, 13°13–18°40 S. J Geophys Res 101(B4):8685–8695

    Article  Google Scholar 

  10. Baldwin RT, Langel R (1993) Tables and maps of the DGRF 1985 and IGRF 1990. IAGA Bulletin 54:158

    Google Scholar 

  11. Bilim F, Ates A (2003) Analytic signal inferred from reduced to the pole data. J Balkan Geophys Soc 6:66–74

    Google Scholar 

  12. Bilim F, Ates A (2005) Analitik Sinyal yontemlerinin manyetik model verileri uzerinde karsilastirilmasi. Istanbul Univ Muh Fak Yerbilimleri Dergisi 18:151–162 (in Turkish with English Abstract)

    Google Scholar 

  13. Bilim F, Akay T, Aydemir A, Kosaroglu S (2016) Curie point depth, heat flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics 60:44–57

    Article  Google Scholar 

  14. Bilim F, Aydemir A, Ates A (2017a) Tectonics and thermal structure in the Gulf of Iskenderun (Southern Turkey) from the aeromagnetic, borehole and seismic data. Geothermics 70:206–221

    Article  Google Scholar 

  15. Bilim F, Kosaroglu S, Aydemir A, Buyuksarac A (2017b) Thermal investigation in the Cappadocia Region, Central Anatolia-Turkey, analyzing Curie point depth, geothermal gradient and heat flow maps from the aeromagnetic data. Pure Appl Geophys 174:4445–4458

    Article  Google Scholar 

  16. Bingol E (1989). Geological map of Turkey (scale: 1/2.000.000), publication of the General Directorate of Mineral Research and Exploration (MTA), Ankara

  17. Blakely RJ (1996) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge, p 441

    Google Scholar 

  18. Bonneville A, Gouze P (1992) Thermal survey of Mount Etna volcano from space. Geophys Res Lett 19:725–728

    Article  Google Scholar 

  19. Calvert A, Sandvol E, Seber D, Barazangi M, Vidal F, Alguacil G, Jabour N (2000) Propagation of regional seismic phases (Lg and Sn) and Pn velocity structure along the Africa-Iberia plate boundary zone: tectonic implications. Geophys J Int 142:384–408

    Article  Google Scholar 

  20. Cooper GRJ, Cowan DR (2006) Enhancing potential field data using filters based on the local phase. Comput Geosci 32:1585–1591

    Article  Google Scholar 

  21. Davies AG, Chien S, Wright R, Miklius A, Kyle PR, Welsh M, Johnson JB, Tran D, Schaffer SR, Sherwood R (2006) Sensor web enables rapid response to volcanic activity. EOS, Transactions, AGU 87:1–5

    Article  Google Scholar 

  22. Di Bello G, Filizzola C, Lacava T, Marchese F, Pergola N, Pietrapertosa C, Piscitelli S, Scaffidi I, Tramutoli V (2004) Robust satellite techniques for volcanic and hazards monitoring. Ann Geophys-Italy 47:49–64

    Google Scholar 

  23. Diliberto IS, Candela EG, Morici S, Pecoraino G, Bellomo S, Bitetto M, Longo M (2018) Changes in heat released by hydrothermal circulation monitored during an eruptive cycle at Mt. Etna (Italy). Bull Volcanol 80:31

    Article  Google Scholar 

  24. Di Pippo R (2008) Geothermal power plants: principals, applications, case studies and environmental impact. Butterworth-Heinemann-Elsevier, Oxford, UK, p 493

    Google Scholar 

  25. Dolmaz MN, Hisarli ZM, Ustaomer T, Orbay N (2005) Curie point depths based on spectrum analysis of the aeromagnetic data, west Anatolian extensional province, Turkey. Pure Appl Geophys 162:571–590

    Article  Google Scholar 

  26. Dolmaz MN, Elitok O, Kalyoncuoglu UY (2008) Interpretation of low seismicity in the eastern Anatolian collisional zone using geophysical (seismicity and aeromagnetic) and geological data. Pure Appl Geophys 165:311–330

    Article  Google Scholar 

  27. Duffield W A, Sass J H (2003). Geothermal energy—clean power from the Earth’s heat. USGS, circular 1249. USGS, Denver, Co. Pp. 36

  28. Elitok O, Dolmaz MN (2008) Mantle flow-induced crustal thinning in the area between the easternmost part of the Anatolian plate and the Arabian foreland (E Turkey) deduced from the geological and geophysical data. Gondwana Res 13:302–318

    Article  Google Scholar 

  29. Ercan T, Fujitani T, Madsuda J-I, Notsu K, Tokel S, Tadahide UJ (1990) Appraisal of new geochemical, radiometric and isotopic data related to eastern and southeastern volcanites of Neogene-quaternary age. Bull Miner Res Expl Inst(MTA) Turk 110:143–164

    Google Scholar 

  30. Faccena C, Becker TW, Jolivet L, Keskin M (2013) Mantle convection in the Middle East: reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet Sci Lett 375:254–269

    Article  Google Scholar 

  31. Gailler LS, Lénat JF, Blakely RJ (2016) Depth to Curie temperature or bottom of the magnetic sources in the volcanic zone of la Réunion hot spot. J Volcanol Geotherm Res 324:169–178

    Article  Google Scholar 

  32. Goto S, Kinoshita M, Mitzusawa K (2003) Heat flux estimate of warm water flow in a low-temperature diffuse flow site, southern East Pacific Rise 17°25 S. Mar Geophys Res 24:345–357

    Article  Google Scholar 

  33. Gupta H, Roy S (2007) Geothermal energy; an alternative resource for the 21st century. Elsevier, Amsterdam, p 291

    Google Scholar 

  34. Haggerty SE (1978) Mineralogical constraints on Curie isotherm in deep crustal magnetic anomalies. Geophys Res Lett 5:105–109

    Article  Google Scholar 

  35. Haymon RM, Fornari DJ, Edwards MH, Carbotte SM, Wright D, MacDonald KC (1991) Hydrothermal vent distribution along the East Pacific rise crest (9°09–54 N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth Planet Sci Lett 104:513–534

    Article  Google Scholar 

  36. Henley RW, Ellis AJ (1983) Geothermal systems, ancient and modern: a geochemical review. Earth Sci Rev 19:1–50

    Article  Google Scholar 

  37. Hisarli ZM, Dolmaz MN, Okyar M, Etiz A, Orbay N (2012) Investigation into regional thermal structure of the Thrace Region, NW Turkey, from aeromagnetic and borehole data. Stud Geophys Geod 56:269–291

    Article  Google Scholar 

  38. Jaupart C (1986) On the average amount and vertical distribution of radioactivity in the continental crust. In: Burrus J (ed) Thermal modeling in sedimentary basins. Editions Technip, Paris, pp 33–47

    Google Scholar 

  39. Keskin M (2003) Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in eastern Anatolia, Turkey. Geophys Res Lett 30(24):8046

    Article  Google Scholar 

  40. Keskin M (2014). Geodynamic and magmatic evolution of the eastern Anatolian-Arabian collision zone, Turkey. EGU general assembly, 27 April–02 May, 2014, Vienna, Austria

  41. Keskin M, Chugaev AV, Lebedev VA, Sharkov EV, Oyan V, Kavak O (2012a) The geochronology and origin of mantle sources for late Cenozoic intraplate volcanism in the frontal part of the Arabian plate in the Karacadag Neovolcanic area of Turkey. Part 1. The results of isotope-geochronological studies. J Volcanol Seismol 6:352–360

    Article  Google Scholar 

  42. Keskin M, Chugaev AV, Lebedev VA, Sharkov EV, Oyan V, Kavak O (2012b) The geochronology and origin of mantle sources for late Cenozoic intraplate volcanism in the frontal part of the Arabian plate in the Karacadag Neovolcanic area of Turkey. Part 2. The results of geochemical and isotope (Sr-Nd-Pb) studies. J Volcanol Seismol 6:361–382

    Article  Google Scholar 

  43. Ketin I (1966) Tectonic units of Anatolia. Bull Miner Res Expl Inst (MTA) Turk 66:23–34

    Google Scholar 

  44. Lachenbruch AH (1970) Crustal temperature and heat production: implication of the linear heat flow relationship. J Geophys Res 75:3291–3300

    Article  Google Scholar 

  45. Lei J, Zhao D (2007) Teleseismic evidence for a break-off subducting slab under eastern Turkey. Earth Planet Sci Lett 257:14–28

    Article  Google Scholar 

  46. Lustrino M, Keskin M, Mattioli M, Lebedev VA, Chugaev AV, Sharkov EV, Kavak O (2010) Early activity of the largest Cenozoic shield volcano in the circum-Mediterranean area: Mt. Karacadag, SE Turkey. Eur J Mineral 22:343–362

    Article  Google Scholar 

  47. MacLeod IN, Jones K, Dai TF (1993) 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes. Explor Geophys 24:679–688

    Article  Google Scholar 

  48. Manalo PC, Dimalanta CB, Ramos NT, Faustino-Eslava DV, Queapo KL, Yumul GP Jr (2016) Magnetic signatures and curie surface trend across an arc-continent collision zone: an example from Central Philippines. Surv Geophys 37:557–578

    Article  Google Scholar 

  49. Mauss S, Gordon D, Fairhead DJ (1997) Curie temperature depth estimation using a self-similar magnetization model. Geophys J Int 129:163–168

    Article  Google Scholar 

  50. Mayhew MA, Johnson BD, Wasilewski P (1985) A review of problems and progress in studies of satellite magnetic anomalies. Geophys Res Lett 90:2511–2522

    Article  Google Scholar 

  51. Nabi SHAE (2012) Curie point depth beneath the Barramiya-Red Sea coast area estimated from spectral analysis of aeromagnetic data. J Asian Earth Sci 43:254–266

    Article  Google Scholar 

  52. Nabighian MN (1972) The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics 37:507–517

    Article  Google Scholar 

  53. Nwobgo PO (1998) Spectral prediction of magnetic source depths from simple numerical models. Comput Geosci 24:847–852

    Article  Google Scholar 

  54. Okubo Y, Graf RJ, Hansen RO, Ogowa K, Tsu H (1985) Curie point depth of the island of Kyushu and surrounding areas, Japan. Geophysics 50:481–494

    Article  Google Scholar 

  55. Ortiz-Aleman C, Urrutia-Fucugauchi J (2010) Aeromagnetic anomaly modeling of central zone structure and magnetic sources in the Chicxulub crater. Phys Earth Planet Inter 179:127–138

    Article  Google Scholar 

  56. Over S, Ozden S, Yilmaz H (2004) Late Cenozoic stress evolution along the Karasu Valley, SE Turkey. Tectonophysics 380:43–68

    Article  Google Scholar 

  57. Pergola N, Marchese F, Tramutoli V, Filizzola C, Ciampa M (2008) Advanced satellite technique for volcanic activity monitoring and early warning. Ann Geophys-Italy 51:287–301

    Google Scholar 

  58. Pergola N, D’Angelo G, Lisi M, Marchese F, Mazzeo G, Tramutoli V (2009) Time domain analysis of robust satellite techniques (RST) for near real-time monitoring of active volcanoes and thermal precursor identification. Phys Chem Earth 34:380–385

    Article  Google Scholar 

  59. Piper J D A, Tatar O, Gursoy H, Kocbulut F, Mesci B L (2006). Paleomagnetic analysis of neotectonic deformation in the Anatolian accretionary collage, Turkey. In: Dilek, Y., Pavlides, S. (eds.) Postcollisional tectonics and magnetism in the Mediterranean region and Asia. Geol. Soc. am. Spec. Publ. 409: 417–440

  60. Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms, and the thickness of the lithosphere. Tectonophysics 38:279–296

    Article  Google Scholar 

  61. Ross HE, Blakely RJ, Zoback MD (2006) Testing the use of aeromagnetic data for the determination of curie depth in California. Geophysics 71:L51–L59

    Article  Google Scholar 

  62. Saibi H, Nishijima J, Ehara S, Aboud E (2006) Integrated gradient interpretation techniques for 2-D and 3-D gravity data interpretation. Earth Planets Space 58:815–821

    Article  Google Scholar 

  63. Salem A, Ravat D, Gamey TJ, Ushijima K (2002) Analytic signal approach and its applicability in environmental magnetic investigations. J Appl Geophys 49:231–244

    Article  Google Scholar 

  64. Salem A, Williams S, Fairhead JD, Ravat D, Smith R (2007) Tilt-depth method: a simple depth estimation method using first-order magnetic derivatives. Lead Edge 26:1502–1505

    Article  Google Scholar 

  65. Sengor AMC, Yilmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241

    Article  Google Scholar 

  66. Sengor AMC, Ozeren S, Genc T, Zor E (2003) East Anatolian high plateau as a mantle-supported, north-south shortened domal structure. Geophys Res Lett 30(24):8045

    Article  Google Scholar 

  67. Smith RB, Braille LW (1994) The Yellowstone hotspot. J Volcanol Geotherm Res 61:121–188

    Article  Google Scholar 

  68. Spector A, Grant FS (1970) Statistical models for interpretation aeromagnetic data. Geophysics 35:293–302

    Article  Google Scholar 

  69. Springer M (1999) Interpretation of heat-flow density in the Central Andes. Tectonophysics 306:377–395

    Article  Google Scholar 

  70. Starostenko VI, Dolmaz MN, Kutas RI, Rusakov OM, Oksum E, Hisarli ZM, Okyar M, Kalyoncuoglu UY, Tutunsatar HE, Legostaeva OV (2014) Thermal structure of the crust in the Black Sea: comparative analysis of magnetic and heat flow data. Mar Geophys Res 35:345–359

    Article  Google Scholar 

  71. Stein C, Abbott D (1991) Heat flow constraints on the South Pacific Superswell. J Geophys Res 96:16083–16100

    Article  Google Scholar 

  72. Tabbagh A, Tabbagh J, Dechambenoy C (1987) Mapping of the surface temperature of Mount Etna and Vulcano Island using an airborne scanner radiometer. J Volcanol Geotherm Res 34:79–88

    Article  Google Scholar 

  73. Tezel T, Shibutani T, Kaypak B (2013) Crustal thickness of Turkey determined by receiver function. J Asian Earth Sci 75:36–45

    Article  Google Scholar 

  74. Tselentis GA (1991) An attempt to define Curie depth in Greece from aeromagnetic and heat flow data. Pure Appl Geophys 136:87–101

    Article  Google Scholar 

  75. Turcotte DL, Schubert G (1982) Geodynamics: applications of continuum physics to geological problems. John Wiley, New York

    Google Scholar 

  76. Verduzco B, Fairhead JD, Gren CM, MacKenzie C (2004) New insights into magnetic derivatives for structural mapping. Lead Edge 23:116–119

    Article  Google Scholar 

  77. Wohletz K, Heiken G (1992) Volcanology and geothermal energy. University of California Press, Berkeley, Los Angeles

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the General Directorate of Mining Research and Exploration (MTA) of Turkey for the aeromagnetic data used in a Turkish Scientific Research Council (TUBITAK) Project (Project Code YDABCAG-118). Authors thank Dr. Andrew Harris, the Editor-in-Chief for his efforts and suggestions during the last revision periods, and two reviewers for their constructive critiques.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Attila Aydemir.

Additional information

Editorial responsibility: M.R. James

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bilim, F., Aydemir, A., Kosaroglu, S. et al. Effects of the Karacadag Volcanic Complex on the thermal structure and geothermal potential of southeast Anatolia. Bull Volcanol 80, 52 (2018). https://doi.org/10.1007/s00445-018-1228-y

Download citation

Keywords

  • Karacadag
  • Akcakale graben
  • Shield volcano
  • Curie point depth
  • Geothermal gradient
  • Heat flow