Characteristics and consequences of lava dome collapse at Ruawahia, Taupo Volcanic Zone, New Zealand

  • P. A. Ashwell
  • B. M. Kennedy
  • M. Edwards
  • J. W. Cole
Research Article


The eruption of large, rhyolitic lava domes may be accompanied by the formation of large block and ash flows. This may be linked to the style of dome extrusion—whether it forms a series of individual lobes, flows or spines (exogenous) or grows by internal inflation (endogenous). Lava domes can transition from one extrusive style to another as a result of a change in extrusion rate or the formation of facilitating structures such as shear zones. How this change can affect large rhyolitic lava domes is unclear as there are few historically recorded rhyolitic dome eruptions. Here, we present structures at Ruawahia lava dome (a well exposed ~ 700-year-old lava dome), how these facilitating structures enable exogenous extrusion at Ruawahia dome, and link this to collapse episodes along the fringes of the dome during growth. Ruawahia dome is part of the Tarawera dome complex, a chain of domes running parallel to regional structures across the Okataina caldera complex in the Taupo Volcanic Zone, New Zealand. Ruawahia dome consists of (1) a high porosity (44–52%), crystalline (65% DRE), locally brecciated carapace facies with rare bread-crusting and ‘ropey’ flow textures; (2) a core facies of dominantly low to moderate porosity (20–25%) with elongate vesicles that mark weak flow bands; and (3) thin (< 5 m thick) interior breccia zones. Flow bands at Ruawahia are complex and do not fit with hypothesised flow band orientations attributed to a single phase of exogenous or endogenous dome growth. Inward dipping flow bands on ramp structures on the flow surface suggest a flow-like (coulée) morphology; however, steeply dipping and multidirectional flow bands on the edges of the dome challenge this hypothesis. Widespread block and ash flow deposits have been sourced from the leading dome fronts to the NW and SE; these collapse events left behind inflated and bread-crusted outcrops on these dome fronts, suggesting syn-eruption collapse events that led to expansion of a hot, pressurised dome interior. We consider Ruawahia erupted from multiple, aligned vents, either as lobes confined within the crater of a pyroclastic cone formed during the initial Plinian phase of the eruption or those able to flow down the cone flank. The confined lobes formed steep internal breccia zones as individual dome lobes extruded past one another. Lobes that were able to overcome the pyroclastic cone rim (or where the vent was outside the crater) were able to flow down the flanks as bulldozing, thickening flows with dominantly ductile interiors and brittle exteriors; these flows collapsed as the front thickened, possibly due to a decrease in gradient, producing widespread block and ash flows. The removal of lava associated with collapse generated a decompression event which resulted in fragmentation, cracking and vesiculation in the hot interior of the lava flows. These events left behind a re-vesiculated and bread-crusted lava flow front and produced block and ash flows with abundant breadcrust bombs that reached the base of Tarawera.


Lava dome Dome structure Block and ash flow Dome collapse 



We would like to thank Ken Raureti and members of the Ruawahia 2B Trust for allowing access for fieldwork on Tarawera and to the two anonymous reviewers, as well as the editors J. Fierstein and A. Harris, for their insightful and thorough reviews which have greatly improved the manuscript. We wish to acknowledge the Earthquake Commission of New Zealand (EQC), Mighty River Power (MRP) and GNS Science for the primary funding for this study (part of grant 4616) as well as the Marsden Fast Start grant 09-UO-017C for providing supplementary funding.


  1. Acocella V, Spinks KD, Cole JW, Nicol A (2003) Oblique back arc rifting of Taupo Volcanic Zone, New Zealand. Tectonics 22(4):1–18CrossRefGoogle Scholar
  2. Anderson SW, Fink JH (1989) Hydrogen isotope evidence for extrusion mechanisms of the Mount St. Helens lava dome. Nature 341(October):521–523CrossRefGoogle Scholar
  3. Ashwell PA, Kennedy BM, Gravley DM, von Aulock FW, Cole JW (2013) Insights into caldera and regional structures and magma body distribution from lava domes at Rotorua Caldera, New Zealand. J Volcanol Geotherm Res 258:187–202CrossRefGoogle Scholar
  4. Ashwell PA, Kendrick JE, Lavallée Y, Kennedy BM, Hess K-U, von Aulock FW, Wadsworth FB, Vasseur J, Dingwell DB (2015) Permeability of compacting porous lavas. J Geophys Res Solid Earth 120(3):1605–1622CrossRefGoogle Scholar
  5. Ball JL, Stauffer PH, Calder ES, Valentine GA (2015) The hydrothermal alteration of cooling lava domes. Bull Volcanol 77:102CrossRefGoogle Scholar
  6. Bibby HM, Caldwell TG, Davey F, Webb T (1995) Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation. J Volcanol Geotherm Res 68(1–3):29–58CrossRefGoogle Scholar
  7. Bull KF, Anderson SW, Diefenbach AK, Wessels RL, Henton SM (2012) Emplacement of the final lava dome of the 2009 eruption of Redoubt Volcano, Alaska. J Volcanol Geotherm Res 259:334–348CrossRefGoogle Scholar
  8. Calder ES, Luckett R, Sparks RSJ, Voight B (2002) Mechanisms of lava dome instability and generation of rockfalls and pyroclastic flows at Soufriere Hills Volcano, Montserrat. Mem Geol Soc Lond 21:173–190CrossRefGoogle Scholar
  9. Calder ES, Lavallée Y, Kendrick JE, Berstein B (2015) Lava dome eruptions. In: Sigurdsson H et al (eds) Encyclopedia of Volcanoes, 2nd edn. Academic Press, Sand Diego, pp 343–362CrossRefGoogle Scholar
  10. Caricchi L, Pommier A, Pistone M, Castro JM, Burgisser A, Pergugini D (2011) Strain-induced magma degassing: insights from simple-shear experiments on bubble bearing melts. Bull Volcanol 73(9):1245–1257CrossRefGoogle Scholar
  11. Carn SA, Watts RB, Thompson G, Norton GE (2004) Anatomy of a lava dome collapse: the 20 March 2000 event at Soufrière Hills Volcano, Montserrat. J Volcanol Geotherm Res 131(3–4):241–264CrossRefGoogle Scholar
  12. Carr BB, Clarke AB, Vanderkluysen L (2016) The 2006 lava dome eruption of Merapi Volcano (Indonesia); detailed analysis using MODIS TIR. J Volcanol Geotherm Res 311:60–71CrossRefGoogle Scholar
  13. Cas RAF, Wright JV (1988) Volcanic successions modern and ancient: a geological approach to processes, products and successions. Unwin Hyman, London, p 528Google Scholar
  14. Cashman KV, Taggart JE (1983) Petrologic monitoring of 1981 and 1982 eruptive products from Mount St. Helens. Science 221(4618):1385–1387CrossRefGoogle Scholar
  15. Cashman KV, Thornber CR, Pallister, JS (2008) From dome to dust: shallow crystallization and fragmentation of conduit magma during the 2004–2006 dome extrusion of Mount St. Helens, Washington. In: Sherrod DR, Scott WE, Stauffer PH (eds) A Volcano Rekindled: The Renewed Eruption of Mt St Helens, 2004–2006. USGS, pp 387–413Google Scholar
  16. Castro JM, Cashman KV (1999) Constraints on rheology of obsidian lavas based on mesoscopic folds. J Struct Geol 21:807–819CrossRefGoogle Scholar
  17. Castro J, Cashman K, Joslin N, Olmsted B (2002) Structural origin of large gas cavities in the Big Obsidian Flow, Newberry Volcano. J Volcanol Geotherm Res 114:313–330Google Scholar
  18. Castro JM, Burgisser A, Schipper CI, Mancini S (2012a) Mechanisms of bubble coalescence in silicic magmas. Bull Volcanol 74(10):2339–2352CrossRefGoogle Scholar
  19. Castro JM, Cordonnier B, Tuffen H, Tobin MJ, Puskar L, Martin MC, Bechtel HA (2012b) The role of melt-fracture degassing in defusing explosive rhyolite eruptions at volcán Chaitén. Earth Planet Sci Lett 333–334:63–69CrossRefGoogle Scholar
  20. Castro JM, Bindeman IN, Tuffen H, Schipper CI (2014) Explosive origin of silicic lava: textural and deltaD-H2O evidence for pyroclastic degassing during rhyolite effusion. Earth Planet Sci Lett 405(November):52–61CrossRefGoogle Scholar
  21. Cole JW (1970a) Petrography of the rhyolite lavas of Tarawera Volcanic Complex. N Z J Geol Geophys 13(4):903–924CrossRefGoogle Scholar
  22. Cole JW (1970b) Structure and eruptive history of the Tarawera Volcanic Complex. N Z J Geol Geophys 13(4):881–902Google Scholar
  23. Cole JW (1990) Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand. Bull Volcanol 52:445–459CrossRefGoogle Scholar
  24. Cole JW, Lewis KB (1981) Evolution of the Taupo-Hikurangi subduction system. Tectonophysics 72:1–21CrossRefGoogle Scholar
  25. Cole JW, Spinks KD, Deering CD, Nairn IA, Leonard GS (2010) Volcanic and structural evolution of the Okataina Volcanic Centre; dominantly silicic volcanism associated with the Taupo Rift, New Zealand. J Volcanol Geotherm Res 190(1–2):123–135CrossRefGoogle Scholar
  26. Dennen RL, Bursik MI, Roche O (2014) Dome collapse mechanisms and block-and-ash flow emplacement dynamics inferred from deposit and impact mark analysis, Mono Craters, CA. J Volcanol Geotherm Res 276:1–9CrossRefGoogle Scholar
  27. Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273(5278):1054–1055CrossRefGoogle Scholar
  28. Donovan AR, Oppenheimer C, Bravo M (2012) Contested boundaries: delineating the “safe zone” on Montserrat. Appl Geogr 35(1–2):508–514CrossRefGoogle Scholar
  29. Druitt TH, Young SR, Baptie B, Bonadonna C, Calder ES, Clarke AB, Cole PD, Harford CL, Herd RA, Luckett R, Ryan G, Voight B (2002) Episodes of cyclic Vulcanian explosive activity with fountain collapse at Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21:281–306CrossRefGoogle Scholar
  30. Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602CrossRefGoogle Scholar
  31. Farquharson JI, James MR, Tuffen H (2015) Examining rhyolite lava flow dynamics through photo-based 3D reconstructions of the 2011-2012 lava flowfield at Cordon-Caulle, Chile. J Volcanol Geotherm Res 304:336–348CrossRefGoogle Scholar
  32. Fink JH, Anderson SW (2000) Lava domes and coulees. In: Sigurdsson H et al (eds) Encyclopedia of Volcanoes. Academic Press, San Diego, pp 307–319Google Scholar
  33. Fink JH, Kieffer SW (1993) Estimate of pyroclastic flow velocities resulting from explosive decompression of lava domes. Nature 363:612–615CrossRefGoogle Scholar
  34. Fink JH, Manley CR (1987) Origin of pumiceous and glassy textures in rhyolite flows and domes. Spec Pap Geol Soc Am 212:77–88Google Scholar
  35. Fink JH, Pollard DD (1983) Structural evidence for dikes beneath silicic domes, Medicine Lake Highland Volcano, California. Geology 11:458–461CrossRefGoogle Scholar
  36. Fink JH, Malin MC, Anderson SW (1990) Intrusive and extrusive growth of the Mount St Helens lava dome. Nature 348(6300):435–437CrossRefGoogle Scholar
  37. Fink JH, Anderson SW, Manley CR (1992) Textural constraints on effusive silicic volcanism: beyond the permeable foam model. J Geophys Res 97(B6):9073–9083CrossRefGoogle Scholar
  38. Gardner JE (2007) Bubble coalescence in rhyolitic melts during decompression from high pressure. J Volcanol Geotherm Res 166(3–4):161–176CrossRefGoogle Scholar
  39. Gardner JE, Hilton M, Carroll MR (1999) Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure. Earth Planet Sci Lett 168:201–218CrossRefGoogle Scholar
  40. Gardner JE, Hilton M, Carroll MR (2000) Bubble growth in highly viscous silicate melts during continuous decompression from high pressure. Geochim Cosmochim Acta 64(8):1473–1483CrossRefGoogle Scholar
  41. Griffiths R, Fink J (1993) Effects of surface cooling on the spreading of lava flows and domes. J Fluid Mech 252:667–702Google Scholar
  42. Griffiths RW, Fink JH (1997) Solidifying Bingham extrusions: a model for the growth of silicic lava domes. J Fluid Mech 347:13–36CrossRefGoogle Scholar
  43. Hale AJ (2008) Lava dome growth and evolution with an independently deformable talus. Geophys J Int 174(1):391–417CrossRefGoogle Scholar
  44. Hale AJ, Wadge G (2008) The transition from endogenous to exogenous growth of lava domes with the development of shear bands. J Volcanol Geotherm Res 171(3–4):237–257CrossRefGoogle Scholar
  45. Hanenkamp E (2011) Decoupling processes in block-and-ash flows: field evidence and analogue modelling. PhD thesis, University of CanterburyGoogle Scholar
  46. Heap MJ, Russell JK, Kennedy LA (2016) Mechanical behaviour of dacite from Mount St. Helens (USA): a link between porosity and lava dome extrusion mechanism (dome or spine)? J Volcanol Geotherm Res 328:159–177CrossRefGoogle Scholar
  47. Herd RA, Edmonds M, Bass VA (2005) Catastrophic lava dome failure at Soufrière Hills Volcano, Montserrat, 12–13 July 2003. J Volcanol Geotherm Res 148(3–4):234–252CrossRefGoogle Scholar
  48. Hornby AJ, Kendrick JE, Lamb OD, Hirose T, De Angelis S, von Aulock FW, Umakoshi K, Miwa T, De Angelis SH, Wadsworth FB, Hess K-U, Dingwell DB, Lavallee Y (2015) Spine growth and seismogenic faulting at Mt. Unzen, Japan. J Geophys Res Solid Earth 120(6):4034–4054CrossRefGoogle Scholar
  49. Houghton BF, Wilson CJN, Del Carlo P, Coltelli M, Sable JE, Carey RJ (2004) The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC. J Volcanol Geotherm Res 137(1–3):1–14CrossRefGoogle Scholar
  50. Jaupart C, Allegre CJ (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102:413–429CrossRefGoogle Scholar
  51. Kaneko T, Wooster MJ, Nakada S (2002) Exogenous and endogenous growth of the Unzen lava dome examined by satellite infrared image analysis. J Volcanol Geotherm Res 116(1–2):151–160CrossRefGoogle Scholar
  52. Kendrick JE, Lavallée Y, Ferk A, Perugini D, Leonhardt R, Dingwell DB (2012) Extreme frictional processes in the volcanic conduit of Mount St. Helens (USA) during the 2004–2008 eruption. J Struct Geol 38:61–76CrossRefGoogle Scholar
  53. Kendrick JE, Lavallée Y, Hess KU, Heap MJ, Gaunt HE, Meredith PG, Dingwell DB (2013) Tracking the permeable porous network during strain-dependent magmatic flow. J Volcanol Geotherm Res 260:117–126CrossRefGoogle Scholar
  54. Kendrick JE, Lavallée Y, Hirose T, Di Toro G, Hornby AJ, De Angelis S, Dingwell DB (2014) Volcanic drumbeat seismicity caused by stick-slip motion and magmatic frictional melting. Nat Geosci 7(6):438–442CrossRefGoogle Scholar
  55. Kennedy BM, Jellinek AM, Russell JK, Nichols ARL, Vigouroux N (2010) Time-and temperature-dependent conduit wall porosity: a key control on degassing and explosivity at Tarawera volcano, New Zealand. Earth Planet Sci Lett 299(1–2):126–137CrossRefGoogle Scholar
  56. Kennedy BM, Wadsworth FB, Vasseur J, Schipper CI, Jellinek AM, von Aulock FW, Hess K-U, Russell JK, Lavallée Y, Nichols ARL, Dingwell DB (2016) Surface tension driven processes densify and retain permeability in magma and lava. Earth Planet Sci Lett 433:116–124CrossRefGoogle Scholar
  57. Klug C, Cashman KV (1996) Permeability development in vesiculating magmas: implications for fragmentation. Bull Volcanol 58:87–100CrossRefGoogle Scholar
  58. Kushnir ARL, Martel C, Champallier R, Arbaret L (2017) In situ confirmation of permeability development in shearing bubble-bearing melts and implications for volcanic outgassing. Earth Planet Sci Lett 458:315–326CrossRefGoogle Scholar
  59. Lamb OD, De Angelis S, Umakoshi K, Hornby AJ, Kendrick JE, Lavallée Y (2015) Cyclic fracturing during spine extrusion at Unzen volcano, Japan. Solid Earth Discuss 7(3):2109–2149CrossRefGoogle Scholar
  60. Latutrie B, Harris A, Médard E, Gurioli L (2017) Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France). Bull Volcanol 79(4):21Google Scholar
  61. Laumonier M, Arbaret L, Burgisser A, Champallier R (2011) Porosity redistribution enhanced by strain localization in crystal-rich magmas. Geology 8:715–718CrossRefGoogle Scholar
  62. Lavallée Y, Meredith PG, Dingwell DB, Hess K-U, Wassermann J, Cordonnier B, Gerik A, Kruhl JH (2008) Seismogenic lavas and explosive eruption forecasting. Nature 453(7194):507–510CrossRefGoogle Scholar
  63. Lavallée Y, Mitchell TM, Heap MJ, Vasseur J, Hess K-U, Hirose T, Dingwell DB (2012) Experimental generation of volcanic pseudotachylytes: constraining rheology. J Struct Geol 38:222–233CrossRefGoogle Scholar
  64. Lavallée Y, Benson PM, Heap MJ, Hess K-U, Flaws A, Schillinger B, Meredith PG, Dingwell DB (2013) Reconstructing magma failure and the degassing network of dome-building eruptions. Geology 41(4):515–518CrossRefGoogle Scholar
  65. Leonard GS, Cole JW, Nairn IA, Self S (2002) Basalt triggering of the c. AD 1305 Kaharoa rhyolite eruption, Tarawera Volcanic Complex, New Zealand. J Volcanol Geotherm Res 115(3–4):461–486CrossRefGoogle Scholar
  66. Leonard GS, Begg JG, Wilson CJN (2010) Geology of the Rotorua Area, Institute of Geological and Nuclear Sciences 1:250000 geological map 5. GNS Science, Lower HuttGoogle Scholar
  67. Loughlin SC, Luckett R, Ryan G, Christopher T, Hards V, De Angelis S (2010) An overview of lava dome evolution, dome collapse and cyclicity at Soufriere Hills Volcano, Montserrat, 2005-2007. Geophys Res Lett 37(9):4–9Google Scholar
  68. Manley CR (1992) Extended cooling and viscous flow of large, hot rhyolite lavas: implications of numerical modeling results. J Volcanol Geotherm Res 53(1–4):27–46CrossRefGoogle Scholar
  69. Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15(6):549–552CrossRefGoogle Scholar
  70. Miyabuchi Y (1999) Deposits associated with the 1990-1995 eruption of Unzen volcano, Japan. J Volcanol Geotherm Res 89(1–4):139–158CrossRefGoogle Scholar
  71. Mourtada-Bonnefoi CC, Laporte D (2004) Kinetics of bubble nucleation in a rhyolitic melt: an experimental study of the effect of ascent rate. Earth Planet Sci Lett 218(3–4):521–537CrossRefGoogle Scholar
  72. Mueller SP, Melnik O, Spieler O, Scheu B, Dingwell DB (2005) Permeability and degassing of dome lavas undergoing rapid decompression: an experimental determination. Bull Volcanol 67(6):526–538CrossRefGoogle Scholar
  73. Mueller S, Scheu B, Spieler O, Dingwell DB (2008) Permeability control on magma fragmentation. Geology 36(5):399CrossRefGoogle Scholar
  74. Mueller SP, Scheu B, Kueppers U, Spieler O, Richard D, Dingwell DB (2011) The porosity of pyroclasts as an indicator of volcanic explosivity. J Volcanol Geotherm Res 203(3–4):168–174CrossRefGoogle Scholar
  75. Nairn IA (1979) Rotomahana—Waimangu eruption, 1886: base surge and basalt magma. N Z J Geol Geophys 22(3):363–378CrossRefGoogle Scholar
  76. Nairn IA, Cole JW (1981) Basalt dikes in the 1886 Tarawera rift. N Z J Geol Geophys 24(5–6):585–592CrossRefGoogle Scholar
  77. Nairn IA, Kobayashi T, Nakagawa M (1998) The ~10 ka multiple vent pyroclastic eruption sequence at Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand: part 1. Eruptive processes during regional extension. J Volcanol Geotherm Res 86:19–44CrossRefGoogle Scholar
  78. Nairn IA, Self S, Cole JW, Leonard GS, Scutter C (2001) Distribution, stratigraphy and history of proximal deposits from the c. AD 1305 Kaharoa eruption of Tarawera volcano, New Zealand. N Z J Geol Geophys 44(3):467–484CrossRefGoogle Scholar
  79. Nairn IA, Shane P, Cole JW, Leonard GS, Self S, Pearson N (2004) Rhyolite magma processes of the∼ AD 1315 Kaharoa eruption episode, Tarawera volcano, New Zealand. J Volcanol Geotherm Res 131:265–294CrossRefGoogle Scholar
  80. Nakada S, Miyake Y, Sato H, Oshima O, Fujinawa A (1995) Endogenous growth of dacite dome at Unzen volcano (Japan), 1993 – 1994. Geology 23:157–160CrossRefGoogle Scholar
  81. Nakada S, Shimizu H, Ohta K (1999) Overview of the 1990–1995 eruption at Unzen volcano. J Volcanol Geotherm Res 89:1–22CrossRefGoogle Scholar
  82. Okumura S, Nakamura M, Takeuchi S, Tsuchiyama A, Nakano T, Uesugi K (2009) Magma deformation may induce non-explosive volcanism via degassing through bubble networks. Earth Planet Sci Lett 281(3–4):267–274CrossRefGoogle Scholar
  83. Platz T, Cronin SJ, Cashman KV, Stewart RB, Smith IEM (2007) Transition from effusive to explosive phases in andesite eruptions—a case-study from the AD1655 eruption of Mt. Taranaki, New Zealand. J Volcanol Geotherm Res 161(1–2):15–34CrossRefGoogle Scholar
  84. Platz T, Cronin SJ, Procter JN, Neall VE, Foley SF (2012) Non-explosive, dome-forming eruptions at Mt. Taranaki, New Zealand. Geomorphology 136(1):15–30CrossRefGoogle Scholar
  85. Quane SL, Russell JK, Friedlander EA (2009) Time scales of compaction in volcanic systems. Geology 37(5):471–474CrossRefGoogle Scholar
  86. Rose WI (1987) Volcanic activity at Santiaguito Volcano 1976-1984. Geol Soc Am Spec Pap 212:17–27Google Scholar
  87. Rose WI, Pearson T, Bonis S (1976) Nuee ardente eruption from the foot of a dacite lava flow, Santiaguito volcano, Guatemala. Bull Volcanol 40(1):23–38CrossRefGoogle Scholar
  88. Rowland JV, Sibson RH (2001) Extensional fault kinematics within the Taupo Volcanic Zone, New Zealand: soft-linked segmentation of a continental rift system. N Z J Geol Geophys 44(2):271–283CrossRefGoogle Scholar
  89. Ryan GA, Loughlin SC, James MR, Jones LD, Calder ES, Christopher T, Strutt MH, Wadge G (2010) Growth of the lava dome and extrusion rates at Soufrière Hills Volcano, Montserrat, West Indies: 2005-2008. Geophys Res Lett 37(19):L00E08CrossRefGoogle Scholar
  90. Sahetapy-Engel ST, Harris AJL (2008) Thermal structure and heat loss at the summit crater of an active lava dome. Bull Volcanol 71(1):15–28CrossRefGoogle Scholar
  91. Sato H, Fujii T, Nakada S (1992) Crumbling of dacite dome lava and generation of pyroclastic flows at Unzen volcano. Nature 360(6405):664–666CrossRefGoogle Scholar
  92. Schauroth J, Wadsworth FB, Kennedy BM, von Aulock FW, Lavallée Y (2016) Conduit margin heating and deformation during the AD1886 basaltic plinian eruption at Tarawera volcano, New Zealand. Bull Volcanol 78(2):14CrossRefGoogle Scholar
  93. Scheu B, Spieler O, Dingwell DB (2006) Dynamics of explosive volcanism at Unzen volcano: an experimental contribution. Bull Volcanol 69(2):175–187CrossRefGoogle Scholar
  94. Schipper CI, Castro JM, Tuffen H, James MR, How P (2013) Shallow vent architecture during hybrid explosive–effusive activity at Cordón Caulle (Chile, 2011–12): evidence from direct observations and pyroclast textures. J Volcanol Geotherm Res 262:25–37CrossRefGoogle Scholar
  95. Seebeck H, Nicol A (2009) Dike intrusion and displacement accumulation at the intersection of the Okataina Volcanic Centre and Paeroa Fault zone, Taupo Rift, New Zealand. Tectonophysics 475(3–4):575–585CrossRefGoogle Scholar
  96. Smith JV, Miyake Y, Oikawa T (2001) Interpretation of porosity in dacite lava domes as ductile-brittle failure textures. J Volcanol Geotherm Res 112(1–4):25–35CrossRefGoogle Scholar
  97. Smith R, Sammonds PR, Kilburn CRJ (2009) Fracturing of volcanic systems: experimental insights into pre-eruptive conditions. Earth Planet Sci Lett 280(1–4):211–219CrossRefGoogle Scholar
  98. Sparks RSJ, Murphy MD, Lejeune AM, Watts RB, Barclay J, Young SR (2000) Control on the emplacement of the andesite lava dome of the Soufriere Hills volcano, Montserrat by degassing-induced crystallization. Terra Nova 12(1):14–20CrossRefGoogle Scholar
  99. Spieler O, Kennedy BM, Kueppers U, Dingwell DB, Scheu B, Taddeucci J (2004) The fragmentation threshold of pyroclastic rocks. Earth Planet Sci Lett 226(1–2):139–148CrossRefGoogle Scholar
  100. Spinks KD, Acocella V, Cole JW, Bassett K (2005) Structural control of volcanism and caldera development in the transtensional Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 144(1–4):7–22CrossRefGoogle Scholar
  101. Stasiuk MV, Barclay J, Carroll MR, Jaupart C (1996) Degassing during magma ascent in the Mule Creek vent (USA). Bull Volcanol 58:117–130CrossRefGoogle Scholar
  102. Swanson SE, Naney MT, Westrich HR, Eichelberger JC (1989) Crystallisation history of obsidian dome, Inyo Domes, California. Bull Volcanol 51:161–176CrossRefGoogle Scholar
  103. Tian Y, Shan Y (2011) The diversity of flow structures in felsic dykes. J Geol Soc Lond 168:1001–1011CrossRefGoogle Scholar
  104. Tuffen H, Dingwell DB (2005) Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions. Bull Volcanol 67(4):370–387CrossRefGoogle Scholar
  105. Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31(12):1089CrossRefGoogle Scholar
  106. Tuffen H, Smith R, Sammonds PR (2008) Evidence for seismogenic fracture of silicic magma. Nature 453(7194):511–514CrossRefGoogle Scholar
  107. Tuffen H, James MR, Castro JM, Schipper CI (2013) Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nat Commun 4:2709CrossRefGoogle Scholar
  108. Ui T, Matsuwo N, Sumita M, Fujinawa A (1999) Generation of block and ash flows during the 1990–1995 eruption of Unzen Volcano, Japan. J Volcanol Geotherm Res 89:123–137CrossRefGoogle Scholar
  109. Vallance JW, Schneider DJ, Schilling SP (2008) Growth of the 2004–2006 Lava-Dome Complex at Mount St. Helens, Washington. In DR Sherrod, WE Scott, PH Stauffer, eds. A Volcano Rekindled: The Renewed Eruption of Mt St Helens, 2004–2006. USGS Professional Paper 1750, pp 169–208Google Scholar
  110. Villamor P, Berryman KR, Nairn IA, Wilson K, Litchfield N, Ries W (2011) Associations between volcanic eruptions from Okataina volcanic center and surface rupture of nearby active faults, Taupo rift, New Zealand: insights into the nature of volcano-tectonic interactions. Geol Soc Am Bull 123(7–8):1383–1405CrossRefGoogle Scholar
  111. Voight B, Sparks RSJ, Miller AD, Stewart RC, Hoblitt RP, Clarke AB, Ewart J, Aspinall WP, Baptie B, Calder ES, Cole PD, Druitt TH, Hartford C, Herd RA, Jackson P, Lejeune AM, Lockhart AB, Loughlin SC, Luckett R, Lynch L, Norton GE, Robertson R, Watson IM, Watts RB, Young SR (1999) Magma flow instability and cyclic activity at soufriere hills volcano, montserrat, british west indies. Science 283(5405):1138–1142CrossRefGoogle Scholar
  112. von Aulock FW, Nichols ARL, Kennedy BM, Oze C (2013) Timescales of texture development in a cooling lava dome. Geochim Cosmochim Acta 114:72–80CrossRefGoogle Scholar
  113. von Aulock FW, Kennedy BM, Maksimenko A, Wadsworth FB, Lavallée Y (2017) Outgassing from open and closed magma foams. Front Earth Sci 5:1–7Google Scholar
  114. Wadge G, Herd R, Ryan GA, Calder ES, Komorowski JC (2010) Lava production at Soufriere Hills Volcano, Montserrat: 1995-2009. Geophys Res Lett 37(3):1–6Google Scholar
  115. Watts RB, Herd RA, Sparks RSJ, Young SR (2002a) Growth patterns and emplacement of the andesitic lava dome at Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21(1):115–152CrossRefGoogle Scholar
  116. Watts RB, Herd RA, Sparks RSJ, Young SR (2002b) The eruption of Soufriere Hills volcano, Montserrat (1995 to 1999). In: Druitt TH, Kokelaar BP (eds) Memoirs of the Geological Society of London. Geological Society of London, London, pp 115–152Google Scholar
  117. Westrich HR, Eichelberger JC (1994) Gas transport and bubble collapse in rhyolitic magma: an experimental approach. Bull Volcanol 56:447–458CrossRefGoogle Scholar
  118. Williamson BJ, Di Muro A, Horwell CJ, Spieler O, Llewellin EW (2010) Injection of vesicular magma into an andesitic dome at the effusive–explosive transition. Earth Planet Sci Lett 295(1–2):83–90CrossRefGoogle Scholar
  119. Wilson CJN, Houghton BF, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM (1995) Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geotherm Res 68:1–28CrossRefGoogle Scholar
  120. Wright HMN, Cashman KV, Rosi M, Cioni R (2007) Breadcrust bombs as indicators of Vulcanian eruption dynamics at Guagua Pichincha volcano, Ecuador. Bull Volcanol 69(3):281–300CrossRefGoogle Scholar
  121. Yamamoto T, Suto S (1993) Pyroclastic flows from the 1991 eruption of Unzen volcano, Japan. Bull Volcanol 55:166–175CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of CanterburyChristchurchNew Zealand
  2. 2.University of GenevaGenevaSwitzerland

Personalised recommendations